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Director de la Tesis Doctoral

Fdo.: Jorge Fernández Fabeiro

Autor de la Tesis Doctoral





Agradecimientos

El trabajo de investigación que recoge esta tesis no habŕıa sido posible sin el
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agradecido a mis padres, por su cariño incondicional y por transmitirme los valores

que me han venido guiado a lo largo de mi vida personal y académica.

Jorge



Resumo

Actualmente a computación paralela atópase dominada parcialmente polos múlti-

ples dispositivos heteroxéneos dispoñibles. Estes dispositivos difiren entre si en ca-

racteŕısticas tales como o conxunto de instruccións que executan, o número e tipo

de unidades de computación que inclúen ou a estrutura dos seus sistemas de memo-

ria. Nos últimos anos apareceron linguaxes, bibliotecas e extensións que permiten

escribir unha soa vez a versión paralela dun código e executala nun amplio abano de

dispositivos, sendo de entre todos eles OpenCL a solución máis extendida. Porén, a

portabilidade funcional non implica portabilidade de rendemento. Deste xeito, uns

dos grandes problemas que segue aberto neste campo é a automatización da porta-

bilidade de rendemento, isto é, a capacidade de adaptar automaticamente un código

dado para a súa execución en calquera dispositivo e obter un bo rendemento. Esta

tese aborda este problema propondo tres solucións diferentes. As tres están baseadas

na aplicación de optimizacións de código a código usadas habitualmente en dispo-

sitivos heteroxéneos. Tanto o conxunto de optimizacións a aplicar como a forma de

aplicalas dependen de varios parámetros de optimización para os que é preciso fixar

determinados valores en función do dispositivo concreto.

A primeira solución proposta é OCLoptimizer, un optimizador de código a código

que partindo de kernels OpenCL anotados e ficheiros de configuración de apoio,

obtén versións optimizadas dos devanditos kernels para un dispositivo concreto.

Amais, cando o kernel a optimizar é único, tamén automatiza a xeración dun código

de host funcional para ese kernel.

As outras dúas solucións foron implementadas utilizando Heterogeneous Pro-

gramming Library (HPL), unha biblioteca C++ que permite programar sistemas

heteroxéneos de xeito fácil e portable. A primeira destas solucións explota as capa-
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cidades de xeración de código en tempo de execución de HPL para xerar versións

dun produto de matrices que se adaptan automaticamente ás caracteŕısticas dun

dispositivo concreto. A última solución consiste no desenvolvemento e incorporación

a HPL dun optimizador capaz de obter en tiempo de execución versións optimizadas

dun código HPL para un dispositivo dado. Mentres as dúas primeiras solucións usan

procesos de procura para atopar os mellores valores para os parámetros de optimi-

zación, esta última alternativa baséase para iso en heuŕısticas definidas a partir de

recomendacións xerais de optimización.



Abstract

Parallel computing is currently partially dominated by the availability of he-

terogeneous devices. These devices differ from each other in aspects such as the

instruction set they execute, the number and the type of computing devices that

they offer or the structure of their memory systems. In the last years, languages,

libraries and extensions have appeared to allow to write a parallel code once and

run it in a wide variety of devices, OpenCL being the most widespread solution of

this kind. However, functional portability does not imply performance portability.

This way, one of the problems that is still open in this field is to achieve automatic

performance portability. That is, the ability to automatically tune a given code for

any device where it will be executed so that it ill obtain a good performance. This

thesis develops three different solutions to tackle this problem. The three of them

are based on typical source-to-source optimizations for heterogeneous devices. Both

the set of optimizations to apply and the way they are applied depend on different

optimization parameters, whose values have to be tuned for each specific device.

The first solution is OCLoptimizer, a source-to-source optimizer that can opti-

mize annotated OpenCL kernels with the help of configuration files that guide the

optimization process. The tool optimizes kernels for a specific device, and it is also

able to automate the generation of functional host codes when only a single kernel

is optimized.

The two remaining solutions are built on top of the Heterogeneous Programming

Library (HPL), a C++ framework that provides an easy and portable way to exploit

heterogeneous computing systems. The first of these solutions uses the run-time

code generation capabilities of HPL to generate a self-optimizing version of a matrix

multiplication that can optimize itself at run-time for an specific device. The last
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solution is the development of a built-in just-in-time optimizer for HPL, that can

optimize, at run-time, a HPL code for an specific device. While the first two solutions

use search processes to find the best values for the optimization parameters, this last

alternative relies on heuristics based on general optimization strategies.



Resumen

Actualmente la computación paralela se encuentra dominada parcialmente por

los múltiples dispositivos heterogéneos disponibles. Estos dispositivos difieren entre

śı en caracteŕısticas tales como el conjunto de instrucciones que ejecutan, el número

y tipo de unidades de computación que incluyen o la estructura de sus sistemas de

memoria. Durante los últimos años han aparecido lenguajes, libreŕıas y extensiones

que permiten escribir una única vez la versión paralela de un código y ejecutarla en

un amplio abanico de dispositivos, siendo de entre todos ellos OpenCL la solución

más extendida. Sin embargo, la portabilidad funcional no implica portabilidad de

rendimiento. Aśı, uno de los grandes problemas que sigue abierto en este campo

es la automatización de la portabilidad de rendimiento, es decir, la capacidad de

adaptar automáticamente un código dado para su ejecución en cualquier dispositivo

y obtener un buen rendimiento. Esta tesis aborda este problema planteando tres

soluciones diferentes al mismo. Las tres se basan en la aplicación de optimizaciones

de código a código usadas habitualmente en dispositivos heterogéneos. Tanto el

conjunto de optimizaciones a aplicar como la forma de aplicarlas dependen de varios

parámetros de optimización, cuyos valores han de ser ajustados para cada dispositivo

concreto.

La primera solución planteada es OCLoptimizer, un optimizador de código a

código que a partir de kernels OpenCL anotados y ficheros de configuración como

apoyo, obtiene versiones optimizada de dichos kernels para un dispositivo concreto.

Además, cuando el kernel a optimizar es único, automatiza la generación de un

código de host funcional para ese kernel.

Las otras dos soluciones han sido implementadas utilizando Heterogeneous Pro-

gramming Library (HPL), una libreŕıa C++ que permite programar sistemas he-

xi



xii

terogéneos de forma fácil y portable. La primera de estas soluciones explota las

capacidades de generación de código en tiempo de ejecución de HPL para generar

versiones de un producto de matrices que se adaptan automáticamente en tiempo

de ejecución a las caracteŕısticas de un dispositivo concreto. La última solución con-

siste en el desarrollo e incorporación a HPL de un optimizador al vuelo, de forma

que se puedan obtener en tiempo de ejecución versiones optimizadas de un código

HPL para un dispositivo dado. Mientras las dos primeras soluciones usan procesos

de búsqueda para encontrar los mejores valores para los parámetros de optimiza-

ción, esta última alternativa se basa para ello en heuŕısticas definidas a partir de

recomendaciones generales de optimización.



Prólogo

La evolución del hardware a lo largo de las últimas décadas ha derivado en que

actualmente múltiples tipos de dispositivos desempeñen papeles cŕıticos en el ámbi-

to de la computación de altas prestaciones. Estos dispositivos diferen entre śı en

detalles como el juego de instrucciones que ejecutan, el número y las capacidades de

los elementos de procesamiento que los componen, o la estructura de sus respectivas

jerarqúıas de memoria. Tales diferencias supusieron que la inmensa mayoŕıa de los

mecanismos de programación disponibles para cada uno de ellos fueron diseñados

originalmente teniendo en cuenta las caracteŕısticas propias de cada tipo de dispo-

sitivo. Por este motivo, varios lenguajes, libreŕıas y extensiones han sido propuestas

con el objetivo de la portabilidad de código en mente, esto es, con la idea de per-

mitir que los programadores puedan escribir un determinado código paralelo una

vez y ejecutarlo en una amplia variedad de dispositivos. Las soluciones que han ido

surgiendo han abordado esta cuestión desde diferentes perspectivas que van desde

libreŕıas y lenguajes de propósito espećıfico a estándares abiertos como OpenCL.

OpenCL propone un modelo virtualmente capaz de representar cualquier tipo de

dispositivo, de manera que los códigos programados utilizando este estándar pueden

ser ejecutados en cualquier dispositivo que lo soporte. Sin embargo, esta capaci-

dad de abstracción viene acompañada de un cierto aumento de la complejidad de

programación, sobre todo si se compara con otras soluciones más cercanas a las

caracteŕısticas de cada dispositivo. Aśı, las aplicaciones OpenCL se componen de

un código de kernel que implementa la computación propiamente dicha, y un códi-

go de host que gestiona el entorno de ejecución necesario para lanzar dicho kernel

en un dispositivo determinado. Tomando como base el estándar OpenCL han ido

apareciendo diferentes desarrollos especialmente enfocados en mejorar la programa-

bilidad de los sistemas heterogéneos. Un ejemplo exitoso de estas propuestas es la
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libreŕıa HPL (Heterogeneous Programming Library), una solución de alto nivel que

ofrece una interfaz portable y fácil de usar para explotar las capacidades de los sis-

temas heterogéneos actuales. Los usuarios escriben sus kernels usando un lenguaje

propio de HPL construido sobre C++, siendo estos kernels convertidos en tiempo

de ejecución en código OpenCL. Aśı, si un dispositivo es compatible con OpenCL,

podrá ser programado usando HPL. Efectivamente, tanto HPL como otras propues-

tas similares ofrecen portabilidad funcional en tanto en cuanto están construidas

sobre OpenCL. Sin embargo, este es solamente el primer escollo a superar. Aunque

un mismo código OpenCL se pueda ejecutar en múltiples tipos de dispositivos, las

diferentes capacidades de éstos hacen que para obtener rendimientos aceptables en

cada caso sea necesario escribir diferentes versiones optimizadas manualmente para

cada uno de ellos. De esta limitación surge el interés de ofrecer algún tipo de me-

canismo que permita a los programadores escribir un código una vez y que éste se

adapte automáticamente para un determinado dispositivo. La consecución de herra-

mientas de programación dotadas de esta caracteŕıstica, conocida como portabilidad

de rendimiento, es uno de los principales problemas abiertos hoy en d́ıa en el ámbito

de la computacion heterogénea.

Aśı, el objetivo de la presente tesis es desarrollar y evaluar un conjunto de so-

luciones de alto nivel capaces de ofrecer portabilidad de rendimiento en sistemas

heterogéneos. Puesto que por su diseño, OpenCL es una alternativa válida para

ofrecer portabilidad de código, muchas de las propuestas construidas sobre dicho

estándar van un paso más allá e intentan ofrecer también en la medida de lo posi-

ble portabilidad de rendimiento. Después de un estudio previo de algunas de estas

propuestas, se han extráıdo una serie de caracteŕısticas que pueden ser consideradas

como un buen punto de partida para la implementación de herramientas que aspiren

a ofrecer portabilidad de rendimiento:

Transformaciones de código a código Para ser considerada como capaz de rea-

lizar transformaciones de código a código, una herramienta debe recibir como

entrada programas escritos en algún lenguaje de alto nivel y devolver versiones

modificadas de los mismos, ya sea en el mismo o en otro lenguaje de similares

caracteŕısticas. En esta tesis se exploran diversos mecanismos que transfor-

man códigos escritos por los usuarios en lenguajes de alto nivel en versiones

en OpenCL optimizadas para múltiples dispositivos.



xv

Optimizaciones parametrizadas Las optimizaciones aplicadas a un código sue-

len depender de un conjunto de parámetros de configuración que determinan

cómo va a ser transformado y, por tanto, el rendimiento que éste ofrecerá al

ser ejecutado. Por ejemplo, para un dispositivo concreto puede que resulte in-

teresante desenrollar un bucle y, de ser aśı, habŕıa que fijar un valor adecuado

para el factor de desenrollamiento a aplicar. Dicho factor de desenrollamiento

funcionaŕıa entonces como un parámetro de optimización, lo que conduce a

hablar de optimizaciones parametrizadas.

Búsqueda de valores para los parámetros de optimización La portabilidad

de rendimiento puede articularse a través de un mecanismo capaz de elegir un

conjunto de optimizaciones adecuado en función de las caracteŕısticas del códi-

go de entrada y de las capacidades de un determinado dispositivo. Si dichas

optimizaciones están parametrizadas, una apropiada selección de los valores de

estos parámetros será fundamental para maximizar el rendimiento del código

generado. En esta tesis se exploran diferentes opciones para llevar a cabo esta

selección, implementando en concreto algoritmos de búsqueda tanto exhausti-

va como informada, aśı como heuŕısticas basadas en estrategias generales de

optimzación de código para sistemas heterogéneos.

Interfaces de usuario de alto nivel La interfaz que ofrece OpenCL para ejecu-

tar códigos en los dispositivos soportados descansa en un conjunto de ope-

raciones de bajo nivel que pueden resultar dificultosas para los usuarios más

inexpertos. En esta tesis se exploran diferentes alternativas para liberar a los

usuarios de dichas interacciones o para que, al menos, éstas queden reducidas

a la mı́nima expresión posible.

A continuación se ofrece una descripción de las principales caracteŕısticas de cada

una de las herramientas desarrolladas, pivotando dichas explicaciones en torno a las

propiedades que se acaban de comentar.

OCLoptimizer Esta primera propuesta es una herramienta de optimización itera-

tiva código a código. Recibe como entradas un kernel OpenCL anotado por el

usuario y un fichero de configuración que establece el entorno y ciertas condi-

ciones del proceso de optimización. Los usuarios deben anotar los kernels con
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directivas que indiquen qué secciones del código deben ser optimizadas y con

qué técnicas, las cuales dependen de un conjunto de parámetros cuyos rangos

también han de ser fijados por los usuarios. Esto permite que los procesos ite-

rativos de búsqueda, tanto exhaustiva como informada, implementados en la

herramienta exploren múltiples combinaciones de valores para dichos paráme-

tros y generen las versiones de código correspondientes. Para poder probar

estas versiones y elegir finalmente la más rápida, la herramienta también es

capaz de generar el código de host que permite lanzar kernels OpenCL en un

dispositivo dado. De esta forma, OCLoptimizer pretende liberar al programa-

dor de dos tareas tediosas y propensas a errores como son la optimización

manual de sus kernels OpenCL para diferentes dispositivos y la necesidad de

escribir un código de host para cada uno de ellos. Otra caracteŕıstica desta-

cable de esta herramienta es su soporte de optimización de códigos OpenCL

compuestos de varios kernels, algo que se complica notablemente si además

existen dependencias de datos entre los mismos, siendo esta una situación que

la herramienta es capaz de gestionar.

Kernels HPL autoadaptativos Las caracteŕısticas del mecanismo por el cual

HPL convierte en tiempo de ejecución los kernels escritos en su lenguaje en

código OpenCL abren la posibilidad de generar diferentes versiones OpenCL a

partir de un mismo código de usuario. Aśı, estas capacidades de generación de

código en tiempo de ejecución han sido explotadas para conformar un conjunto

de técnicas de optimización que, a su vez, pueden ser utilizadas para construir

kernels capaces de adaptar su código y, por tanto, su rendimiento, para un

determinado dispositivo. La implementación de estas técnicas de optimización

está parametrizada, de forma que el código resultante de su aplicación depende

de los valores dados a dichos parámetros. Como caso de estudio para explicar

y evaluar el funcionamiento de este enfoque se ha implementado una versión

autoadaptativa de una multiplicación de matrices. En dicha versión es posi-

ble ajustar parámetros como el factor de desenrollamiento y la planificación

de las instrucciones de los bucles, el reparto de trabajo entre los diferentes

elementos de procesado de un dispositivo, qué estructuras se guardan en me-

moria local (una abstracción de OpenCL que representa escalones intermedios

en la jerarqúıa de memoria de los dispositivos, habitualmente alguno de los

niveles de memoria caché) o la vectorización de diferentes operaciones tanto
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de computación como de acceso a memoria. Los valores de estos parámetros

de optimización se ajustan mediante una búsqueda iterativa basada en un

algoritmo genético. En ĺıneas generales, las optimizaciones incluidas en esta

versión autoadaptativa del producto de matrices se inspiran en implementa-

ciones existentes para dispositivos de diferentes tipos y fabricantes. Merecen

una mención especial a este respecto las libreŕıas ViennaCL y clBLAS, ya que

están implementadas en OpenCL y también proporcionan mecanismos para

ofrecer portabilidad de rendimiento entre dispositivos. Precisamente por estos

motivos estas libreŕıas también han sido tomadas como referencia a la hora de

evaluar el rendimiento de este producto de matrices autoadaptativo.

Optimizador just-in-time para HPL Con la implementación y posterior eva-

luación del kernel autoadaptativo del producto de matrices afloraron algunos

inconvenientes que dieron pie a seguir buscando mecanismos más refinados

mediante los cuales HPL pueda ofrecer portabilidad de rendimiento. Por una

parte, la aplicación de las técnicas parametrizadas obliga a los usuarios a re-

escribir sus códigos. Por otra, el algoritmo genético implementado necesita

generar la versión correspondiente a cada combinación de parámetros explo-

rada y ejecutarla a continuación para evaluar su rendimiento. Con el objeto

de mitigar estos inconvenientes se ha incorporado en HPL un optimizador

al vuelo (just-in-time) capaz de adaptar el código automáticamente para un

determinado dispositivo sin retrasar considerablemente su ejecución. Este pro-

ceso recibe como entrada un kernel HPL que el usuario debe escribir de forma

elemental, esto es, describiendo el cálculo de un punto de su problema y sin

aplicar manualmente ninguna técnica de optimización. Dicho código es ana-

lizado y transformado en un árbol sintáctico o AST (Abstract Syntax Tree).

Siguiendo un orden determinado experimentalmente, se aplican una serie de

optimizaciones extráıdas de un conjunto de recomendaciones generales para la

optimización de códigos en entornos heterogéneos. Estas optimizaciones están

implementadas en forma de transformaciones parametrizadas de dicho árbol

sintáctico, siendo los valores asignados a esos parámetros los que determinan

qué optimizaciones concretas se aplican y bajo qué condiciones. En este caso

los valores de los parámetros no se fijan mediante algoritmos de búsqueda im-

plementados a tal efecto, sino mediante un conjunto de heuŕısticas que intentan

trasladar las recomendaciones antes comentadas a dichos parámetros.
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Para validar su funcionamiento, estas tres herramientas han sido utilizadas para

optimizar implementaciones OpenCL y HPL de códigos habituales en dominios tales

como el álgebra lineal densa (multiplicación de matrices y otras operaciones rela-

cionadas), el procesado de señales e imágenes (convoluciones y filtros) o la f́ısica de

part́ıculas (interacciones electromagnéticas y gravitatorias), entre otros. Todos estos

procesos de optimización han sido ejecutados para diferentes tamaños de estos pro-

blemas sobre dispositivos de múltiples tipos (procesadores multinúcleo de propósito

general, unidades de procesamiento gráfico y otras aceleradores many-core) de di-

versos fabricantes (Intel, AMD, Nvidia).

Metodoloǵıa de trabajo

El trabajo de investigación recogido en esta Tesis Doctoral se descompone en

cinco grandes bloques dedicados a la obtención de una visión de conjunto del es-

tado actual de la computación heterogénea, la implementación de cada una de las

tres herramientas anteriormente descritas y, finalmente, la conclusión de trabajo de

investigación con la elaboración del presente documento. A su vez, cada una de

dichas herramientas ha sido desarollada de acuerdo con una metodoloǵıa iterativo-

incremental de modo que, tras una fase de contextualización previa, sucesivas ite-

raciones han ido incrementando las funcionalidades implementadas en cada una de

las herramientas.

Bloque 1: Contextualización

Objetivo: Análisis del estado del arte de la computación heterogénea

Tareas:

Estudio de dispositivos heterogéneos y mecanismos de programación

Estudio de los principales desaf́ıos existentes en este ámbito: portabilidad de

código y portabilidad de rendimiento

Estudio del alcance de diferentes soluciones que abordan dichos desaf́ıos, pres-

tando especial atención a OpenCL y HPL
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Planteamiento de propuestas de aproximación a la portabilidad de rendimien-

to: optimización parametrizada

Bloque 2: OCLoptimizer

Contextualización

Objetivo: Adquisición de habilidades y conocimientos técnicos necesarios

Tareas:

Estudio del estándar OpenCL y familiarización con su modelo de programa-

ción: kernels y hosts

Estudio de libreŕıas de análisis y transformación de código: familiarización con

Clang/LLVM y su interfaz de programación

Estudio de diferentes algoritmos de búsqueda exhaustiva e informada

Iteración 2.1: Optimización individual de kernels OpenCL

Objetivo: Herramienta capaz de recibir kernels OpenCL de usuario y generar

versiones optimizadas para diferentes dispositivos

Tareas:

Interfaz de usuario: directivas parametrizadas de optimización y fichero de

configuración

Implementación de técnicas de optimización: “unroll” y “unroll-and-jam”

Implementación de un mecanismo de análisis y transformación de código me-

diante Clang/LLVM

Procesos de búsqueda de valores optimizados para los parámetros: algoritmos

en anchura y genético

Generación automática de códigos de host OpenCL

Evaluación: Selección de kernels de uso habitual en diferentes aplicaciones y

optimización de los mismos utiizando la herramienta implementada
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Iteración 2.2: Optimización del espacio de trabajo de OpenCL

Objetivo: Funcionalidad adicional: optimización del espacio de trabajo de OpenCL

Tareas:

Interfaz de usuario: macros complementarias a las directivas y extensión de las

opciones del fichero de configuración

Extensión del proceso de generación automática de códigos de host

Procesos de búsqueda de valores optimizados para la configuración del espacio

de trabajo: algoritmos exhaustivo y genético

Evaluación: Optimización combinada del espacio de trabajo y del código de

kernel de las aplicaciones seleccionadas

Iteración 2.3: Optimización de aplicaciones multi-kernel

Objetivo: Funcionalidad adicional: optimización de aplicaciones multi-kernel

Tareas:

Replicación del proceso combinado de optimización para cada kernel

Kernels interdependientes: identificación de las dependencias y replicación del

proceso de optimización condicionada a las mismas

Evaluación: Optimización del problema “Integer Sort” de los NAS Parallel

Benchmarks, compuesto de kernels de ambos tipos.

Bloque 3: Kernels HPL auto-adaptativos

Contextualización

Objetivo: Adquisición de habilidades y conocimientos técnicos sobre HPL

Tareas:

Estudio de la arquitectura de HPL

Familiarización con su modelo de programación: kernels e interfaz de usuario

de alto nivel
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Iteración 3.1: Definición de un conjunto de optimizaciones y aplicación a

un caso de uso

Objetivo: Implementación de kernels HPL capaces de generar automáticamente

diferentes versiones de código adaptadas a diferentes dispositivos

Tareas:

Estudio de las capacidades de generación de código en tiempo de ejecución

(RTCG) de HPL

Selección de un conjunto de optimizaciones aplicadas habitualmente en códigos

para dispositivos heterogéneos

Implementación parametrizada del conjunto de optimizaciones aplicando RTCG.

Proceso de búsqueda de valores optimizados para los parámetros: algoritmo

genético

Evaluación: Implementación de un caso de uso de kernel autoadaptativo (pro-

ducto de matrices) y generación automática de versiones optimizadas para diferentes

tipos de dispositivo

Iteración 3.2: Incorporación de optimizaciones adicionales al caso de uso

Objetivo: Incorporación y refinado de optimizaciones adicionales aplicadas en

implementaciones ya existentes del caso de uso seleccionado

Tareas:

Estudio de implementaciones ya existentes del caso de uso e identificación de

posibles optimizaciones adicionales

Implementación RTCG de las optimizaciones identificadas: vectorización, reor-

denamiento y planificación de instrucciones

Extensión del proceso de búsqueda para soportar las nuevas optimizaciones

implementadas

Evaluación: Extensión de la implementación del caso de uso del producto de

matrices, generación automática de versiones optimizadas para diferentes tipos de

dispositivo y comparación de resultados con los de las soluciones estudiadas
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Bloque 4: Optimizador just-in-time para HPL

Contextualización

Objetivo: Adquisición de conocimientos sobre el funcionamiento interno de HPL

Tareas:

Análisis de la implementación de los tipos de datos propios de HPL

Análisis del mecanismo de evaluación/ejecución de kernels HPL

Análisis del mecanismo de traducción a código OpenCL

Iteración 4.1: Extensión del mecanismo de generación de código de HPL

Objetivo: Incorporación de una etapa intermedia de representación de kernels

en forma de árbol

Tareas:

Definición de una representación sintática intermedia: árbol de sintaxis abs-

tracta (AST), e implementación de la misma

Sustitución del mecanismo actual de traducción de kernels a código OpenCL

por otro de construcción de su representación intermedia

Implementación de un mecanismo de generación de código OpenCL a partir

de un árbol sintático previo

Evaluación: Ejecución de los ejemplos de prueba incluidos en la distribución de

HPL, comparando la corrección de la representación intermedia implementada y su

posterior traducción a código OpenCL

Iteración 4.2: Implementación del proceso de optimización just-in-time

Objetivo: Incorporación de un proceso completo de optimización just-in-time

para kernels HPL

Tareas:

Selección de un conjunto de optimizaciones aplicadas habitualmente en códigos

para dispositivos heterogéneos
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Implementación de dichas optimizaciones en forma de transformaciones para-

metrizadas sobre el AST de un kernel

Definición e implementación de una heuŕıstica de optimización: orden de apli-

cación y determinación de los valores de los parámetros

Interfaz de usuario: kernels HPL simplificados que indiquen la forma general

de cálculo de un punto del problema

Evaluación: Selección de kernels de uso habitual en diferentes aplicaciones,

implementación simplificada de los mismos en HPL y prueba de optimización al

vuelo de los mismos

Bloque 5: Conclusión del trabajo de investigación

Objetivo: Elaboración de la memoria final de la Tesis Doctoral

Tareas:

Recopilación de los trabajos de investigación desarollados

Estructuración, organización y ampliación del contenido

Recopilación y exposición de conclusiones

Análisis de posibles ĺıneas de trabajo futuro

Redacción de la memoria final de la Tesis Doctoral

Medios

Para la elaboración de la tesis se emplearon los medios detallados a continuación:

Soporte económico proporcionado por el Grupo de Arquitectura de Compu-

tadores de la Universidade da Coruña, la propia Universidade da Coruña y el

Banco Santander (beca para estudios de máster 2011-2012)

Redes de investigación en las que se integra esta tesis:

• High-Performance Embedded Architectures and Compilers Network of

Excellence, HiPEAC3 NoE (ref. ICT-287759).
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• High-Performance Embedded Architectures and Compilers Network of

Excellence, HiPEAC4 NoE (ref. ICT-687698).

• Network for Sustainable Ultrascale Computing (NESUS). ICT COST Ac-

tion IC1305.

• Open European Network for High Performance Computing on Complex

Environments (ComplexHPC). ICT COST Action IC0805

• Red de Computación de Altas Prestaciones sobre Arquitecturas Paralelas

Heterogéneas (CAPAP-H4) (ref. TIN2011-15734-E).

• Red de Computación de Altas Prestaciones sobre Arquitecturas Paralelas

Heterogéneas (CAPAP-H5) (ref. TIN2014-53522-REDT).

• Red de Computación de Altas Prestaciones sobre Arquitecturas Paralelas

Heterogéneas (CAPAP-H6) (ref. TIN2016-81840-REDT).

Proyectos de investigación que financiaron esta tesis:

• Architectures, Systems and Tools for High Performance Computing (Mi-

nisterio de Economı́a y Competitividad, TIN2010-16735).

• Consolidación y Estructuración de Unidades de Investigación Competi-

tivas: Grupo de Arquitectura de Computadores de la Universidad de A

Coruña (Xunta de Galicia, ref. 2010/6)

• Consolidación y Estructuración de Unidades de Investigación Competi-

tivas: Grupo de Arquitectura de Computadores de la Universidad de A

Coruña (Xunta de Galicia, GRC2013-055).

• Nuevos desaf́ıos en la computación de altas prestaciones: Desde arqui-

tecturas hasta aplicaciones. (Ministerio de Economı́a y Competitividad,

TIN2013-42148-P).

Estancias de investigación realizadas a lo largo del desarrollo de esta tesis:

• Estancia de septiembre a diciembre de 2015 (3 meses) en el grupo de

investigación Parallel and Distributed Systems de la Delft University of

Technology, bajo la supervisión de los profesores Henk Sips y Ana Lucia

Varbanescu. Financiada mediante una beca INDITEX-UDC para estan-

cias de investigación en el extranjero.
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Recursos de computación empleados en la realización de esta tesis:

• Clúster pluton del Grupo de Arquitectura de Computadores de la Uni-

versidade da Coruña, compuesto de:

◦ 8 nodos con CPU 2 × Intel Xeon E5-2660 de 8 cores y 64 GB de

RAM. Cada nodo cuenta con una GPU NVIDIA K20m con 5 GB de

RAM. La red de interconexión es Infiniband FDR.

◦ 4 nodos con CPU Intel Xeon X5650 de 6 cores y 12 GB de RAM.

Cada nodo cuenta con dos GPUs NVIDIA M2050 con 3 GB de RAM

cada una. La red de interconexión es Infiniband QDR.

◦ 1 nodo con CPU 2 × Intel Xeon E5-2660 de 8 cores y 64 GB de

RAM. Cuenta con un acelerador Intel Xeon Phi 5110P de 60 cores y

8 GB de RAM.

◦ 1 nodo con CPU 2 × Intel Xeon E5-2650v2 de 8 cores y 64 GB

de RAM. Cuenta con una GPU AMD FirePro S9150 con 16 GB de

RAM. La red de interconexión es Infiniband FDR.

• Máquina Mercurio del Grupo de Arquitectura de Computadores de la

Universidade da Coruña. 1 Nodo con CPU Intel Core 2 con 2 GB de

RAM. Cuenta con una GPU AMD HD6970 con 2GB de RAM.

Conclusiones

Las plataformas heterogéneas son predominantes actualmente en el ámbito de

la computación de altas prestaciones. Este tipo de plataformas reúnen dispositi-

vos paralelos de múltiples tipos, compuestos a su vez de elementos de procesado

caracterizados por capacidades de procesamiento o una jerarqúıa de memoria de

caracteŕısticas muy diversas. Algunas de estas arquitecturas, como los procesadores

multinúcleo x86, ofrecen capacidades paralelas sin descuidar la retrocompatibilidad

con diseños previos. Otras, como por ejemplo las unidades de procesamiento gráfico

(GPU), evolucionaron hasta convertirse en dispositivos masivamente paralelos de

computación de propósito general. También hay propuestas que tratan de aunar lo

mejor de ambos mundos: diseños como las aceleradoras Xeon Phi de Intel o las APU
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(Accelerated Processing Units) de AMD son capaces de ejecutar códigos inicialmen-

te ideados para CPUs tradicionales sobre arquitecturas masivamente paralelas como

las de las GPUs. Tal variedad de diseños creados por múltiples fabricantes dieron

lugar a infinidad de soluciones de programación más o menos adaptadas a cada caso

concreto. Algunas de estas soluciones se dirigen un tipo de dispositivo y fabricante

concretos, como CUDA, creada por Nvidia para extraer paralelismo de sus GPUs.

Otras soluciones fueron diseñadas planteando aproximaciones más amplias en forma

de entornos de programación paralela, caso de los estándares OpenMP, basado en

directivas de compilación, o MPI, que sigue un paradigma de paso de mensajes.

Dentro de este contexto surgieron evoluciones de estándares anteriores, como es

el caso de la versión 4.0 de OpenMP, o estándares nuevos como OpenACC (basado

en directivas como OpenMP) u OpenCL, que fueron un paso más allá al proponer di-

ferentes mecanismos portables en código para programar dispositivos heterogéneos.

En el caso de OpenCL, el modelo de programación ofrecido se compone de kernels

programados en una extensión de C y un código de host cuyo objeto es preparar

el entorno de ejecución para lanzar dichos kernels. Los códigos de host deben escri-

birse utilizando una interfaz que expone ciertas funcionalidades de bajo nivel y que

pueden resultar complicada para los usuarios más inexpertos. Este inconveniente fue

uno de los detonantes para la aparición de múltiples propuestas para la programa-

ción de sistemas heterogéneos que, basadas en OpenCL, intentar ocultar este tipo

de detalles a los usuarios. Un ejemplo exitoso de ello es Heterogeneous Program-

ming Library (HPL), una libreŕıa en la que se basan algunas de las herramientas

desarrolladas en esta tesis. Siendo la portabilidad de código una de las principales

fortalezas de OpenCL, la diversidad de dispositivos que éste soporta hace que un

mismo kernel no tenga por qué ofrecer directamente un rendimiento óptimo en cada

uno de ello. Sin embargo, existe un conjunto de estrategias genéricas de optimización

que pueden ser aplicadas a estos códigos para adaptarlos a diferentes dispositivos.

La aplicación de dichas estrategias puede realizarse mediante una serie de transfor-

maciones de código dependientes de una serie de parámetros, de forma que valores

particulares de esos parámetros para un dispositivo concreto den lugar a una ver-

sión de código optimizada para el mismo. Esta aproximación es la seguida en todas

las herramientas desarolladas en esta tesis, las cuales son capaces de generar códi-

go OpenCL optimizado para múltiples dispositivos aplicando este tipo de técnicas

parametrizadas y encontrando valores adecuados para estos parámetros a través de
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diferentes procedimientos de búsqueda.

La primera solución presentada es OCLoptimizer, un optimizador de código a

código para kernels OpenCL. Las entradas de esta herramienta son un fichero de

configuración y un kernel anotado por el usuario con indicaciones acerca de las opti-

mizaciones a probar. Las salidas generadas son, por una parte, una versión del kernel

optimizada para un dispositivo concreto y, por otra, un código de host adaptado al

kernel generado. La herramienta también es capaz de optimizar aplicaciones com-

puestas de varios códigos, variando el tratamiento que hace de los mismos según las

dependencias que existan entre ellos. El proceso de optimización implementado en la

herramienta se compone de dos partes. En primer lugar, se busca una configuración

adecuada del espacio de trabajo de OpenCL para el kernel de entrada, pudiendo

realizar dicha búsqueda de forma exhaustiva probando todas las combinaciones le-

gales posibles, o mediante un proceso informado guiado por un algoritmo genético.

Respecto de los kernels, los usuarios pueden anotar los bucles de sus códigos para

que la herramienta pruebe diferentes factores de desenrollamiento sobre los mismos.

En función del número de bucles anotados y el rango de prueba fijado para cada

uno, es posible desencadenar una explosión combinatoria al generar el espacio de

búsqueda del proceso de optimización del kernel. Por ello, para esta segunda parte

no se ofrece un proceso puramente exhaustivo como el anterior, sino que se opta por

una aproximación en anchura o breadth-first (BFS) que va procesando una a una las

directivas encontradas a medida que se va recorriendo el código anotado. También

se ha implementado en este caso una búsqueda genética que prueba de cada vez

diferentes combinaciones de factores de desenrollamiento para todas las directivas

del kernel. Las operaciones de análisis y transformación de código necesarias para

optimizar los kernels están implementadas utilizando Clang, el front-end para C de

la infraestructura de compilación LLVM. El funcionamiento de la herramienta ha

sido validado en una CPU, una GPU y una aceleradora Intel Xeon Phi, obteniendo

resultados satisfactorios para la optimización de códigos OpenCL compuestos tanto

de un único kernel como de varios. En cuanto a las aplicaciones de un solo kernel, la

aceleración media alcanzada fue de 2.22 utilizando algoritmos genéticos (GA) y de

2.86 combinando los algoritmos exhaustivo y en anchura (ES+BFS), si bien el pro-

ceso de búsqueda de la primera aproximación resultó ser unas 10 veces más rápido

que el de la segunda. Respecto de la combinación ES+BFS, las aceleraciones medias

obtenidas fueron respectivamente de 1.59, 2.54 y 4.46 para CPU, GPU y Xeon Phi,
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de modo que el uso de la herramienta resultó beneficioso en las tres plataformas. El

soporte de aplicaciones compuestas de varios códigos fue validado mediante la opti-

mización para CPU y GPU del problema IS de los benchmarks SNU NPB, alcanzado

aceleraciones de 2.45 y 1.19 respectivamente.

En cuanto a las soluciones basadas en la libreŕıa HPL, los kernels auto-adaptativos

fueron la primera aproximación implementada en el contexto de la presente tesis.

Espećıficamente, estos códigos explotan, a través de mecanismos de programación

genérica, las posibilidades de generación de código en tiempo de ejecución ofrecidas

por HPL. Resultado destacable de este trabajo es la implementación de un conjunto

de técnicas parametrizadas de optimización que pueden ser utilizadas para generar

versiones portables en rendimiento de kernels HPL, estando la generación de dichas

versiones gobernada por los valores dados a los parámetros correspondientes. De

esta forma, a partir de un mismo kernel HPL es posible generar versiones con re-

partos de trabajo de granularidades diferentes, desenrollar o aplicar tiling sobre los

bucles del código con diferentes factores o probar diferentes órdenes de planificación

de las instrucciones que dichos bucles ejecutan si están anidados. Aśı mismo, seccio-

nes completas de código pueden ser generadas o no de acuerdo a una determinada

condición. Esto se aplica especialmente en función de si se desea o no explotar la

memoria local de un dispositivo. Estas y otras técnicas fueron utilizadas para im-

plementar un kernel auto-adaptativo de una multiplicación de matrices configurable

mediante una docena de parámetros de optimizacion. La búsqueda de los valores

más adecuados para estos parámetros fue guiada mediante un algoritmo genético

diseñado e implementado de forma similar al incorporado en OCLoptimizer. El fun-

cionamiento de este caso de uso fue evaluado en GPUs Nvidia y AMD, en una CPU

multinúcleo Intel y en una aceleradora Intel Xeon Phi, comparando su rendimiento

con el de las implementaciones auto-adaptativas del producto de matrices proporcio-

nadas por clBLAS y ViennaCL, dos libreŕıas populares de álgebra lineal escritas en

OpenCL. La aceleración media obtenida por los códigos generados a partir del kernel

HPL auto-adaptativo fue de 1.74 respecto de clBLAS y 1.44 respecto de ViennaCL.

En cuanto a la duración del proceso de búsqueda de dichas versiones, el algoritmo

genético implementado fue de media 1.18 veces más rápido que el profiler incorpo-

rado en clBLAS, aśı como unas 160 veces más rápido que la búsqueda exhaustiva

realizada por ViennaCL.
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La primera aproximación a la implementación de kernels autoadaptativos ba-

sada en las capacidades de generación de código en tiempo de ejecución de HPL

puede resultar demasiado compleja para aquellos usuarios con habilidades de pro-

gramación más elementales. Es a esta clase de usuarios a la que principalmente se

dirige el optimizador al vuelo o just-in-time para HPL, segunda herramienta basada

en esta libreŕıa desarrollada en el contexto de esta tesis. Para hacer uso de este

optimizador, los usuarios deben implementar un kernel HPL en el que solamente

especifiquen cómo se calcula un punto del espacio de soluciones de su problema.

Este código será analizado por el optimizador, el cual se encuentra empotrado en el

flujo de trabajo de la libreŕıa, de modo que en tiempo de ejecución se generará una

versión optimizada que será finalmente lanzada en el dispositivo solicitado por el

usuario. Esta aproximación simplifica notablemente la tarea de programar un kernel

HPL autoadaptativo, puesto que ahora a partir de una implementación elemental

es posible generar múltiples versiones diferentes. Las tareas de análisis y transfor-

mación del kernel no se realizan directamente sobre el código de entrada, sino que

éste es previamente cargado en un árbol de sintaxis abstracta (AST), lo que a su

vez obligó a modificar la manera en que HPL tradućıa originalmente sus kernels

a código OpenCL. De esta forma fue posible construir un conjunto de técnicas de

optimización implementadas como transformaciones sobre un AST dado y que in-

tentan plasmar una serie de estrategias comúnmente aplicadas en la optimización

de códigos para dispositivos heterogéneos. En concreto, el optimizador es capaz de

desenrollar y aplicar tiling sobre los bucles de computación del kernel de entrada,

transformar el código para que ciertas estructuras de datos sean previamente co-

piadas en la memoria local disponible en algunos tipos de dispositivos, ajustar la

granularidad del reparto de iteraciones del kernel, y explotar la región de memoria

privada para realizar determinados cálculos y aśı reducir la contención en los accesos

a la memoria global. Todas estas técnicas de optimización son, en mayor o menor

medida, interdependientes, por lo que se aplican siguiendo un orden previamente

fijado de forma experimental. Aśı mismo, todas ellas dependen de un conjunto de

parámetros, de modo que en función de los valores asignados a éstos se aplican unas

u otras técnicas y el código generado por cada una de ellas vaŕıa en consecuen-

cia. Estos valores determinan la configuración del espacio de trabajo de HPL, los

tamaños de tile y los factores de desenrollamiento aplicados a los bucles, la explota-

ción o no de la memoria local, aśı como los tamaños de bloque de memoria privada
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y si el espacio para este bloque debe ser declarado como un array o un conjunto

de variables privadas. Si se elige esta última opción, la computación realizada sobre

dicho espacio de memoria privada será además completamente desenrollada. Como

en las herramientas anteriores, valores diferentes de estos parámetros implican la

generación de diferentes versiones de código para un mismo kernel de entrada, de

manera que si estos valores se escogen en función de las capacidades de un dispositi-

vo concreto, la versión generada estará optimizada para el mismo. Por el momento,

los valores se fijan heuŕısticamente intentando trasladar las recomendaciones gene-

rales antes mencionadas a las caracteŕısticas de cada dispositivo. Para validar esta

herramienta se han optimizado implementaciones elementales de ocho problemas

diferentes en tres plataformas distintas: una GPU Nvidia, una GPU AMD y una

CPU multinúcleo Intel. Las versiones generadas por el optimizador han alcanzado

aceleraciones de entre 1.83 y 57.19 en la GPU Nvidia, de entre 1.21 y 82.98 en la

GPU AMD, y de hasta 27.32 en la CPU de Intel. Aśı mismo, el proceso de optimi-

zación resulta bastante ligero, necesitando entre 1 y 59 milisegundos para generar

las versiones de código OpenCL. Este coste además se va amortizando a lo largo de

las ejecuciones de un kernel, puesto que HPL almacena los kernels ya generados en

una caché interna. Aśı, una vez se obtiene una versión optimizada de un kernel en

una aplicación, ésta puede ser reutilizada sin tener que generarla de nuevo. Estos

resultados muestran que, mediante un conjunto de transformaciones parametrizadas

dirigidas mediante heuŕısticas, el optimizador incorporado es capaz de tomar como

entrada kernels HPL elementales y generar automáticamente y al vuelo versiones de

los mismos optimizadas para diferentes plataformas.

Principales contribuciones

Estudio y análisis de múltiples soluciones para obtener portabilidad de rendi-

miento en sistemas de computación heterogénea.

Estudio y prueba de diferentes arquitecturas y entornos.

Diseño, implementación y prueba de varias soluciones para facilitar la porta-

bilidad de rendimiento en sistemas heterogéneos, combinando:

• diversos mecanismos de programación: lenguajes y libreŕıas;
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• diversos procesos de análisis y transformación de código;

• diversos métodos de búsqueda: exhaustiva, informada y heuŕıstica.

Estudio de rendimiento de estas soluciones comparándolos con los de otras

alternativas relevantes existentes.
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Chapter 1

Introduction

The evolution of hardware during the last decades has made available multiple

kinds of devices that play a critical role in the current parallel computing landscape.

These devices differ in architectural details such as the instruction sets they execute,

the number and capabilities of the computing elements they include, or the structure

of their memory hierarchies. Due to these differences, the vast majority of the

mechanisms originally available to program them were too focused on the capabilities

of each kind of device, which made the programming of these architectures more and

more difficult along the years.

For this reason, several languages, libraries and extensions have been proposed

pursuing code portability, that is, to allow programmers to write a parallelized code

once and run it in a wide variety of devices. Over time, different approaches have

appeared to tackle this issue, ranging from domain-specific libraries or languages to

far-reaching open standards like OpenCL [55], which is the most widespread solution

of this kind.

OpenCL proposes a comprehensive abstraction model virtually able to represent

every kind of computing device. However, offering a programming interface that

fully supports such a model also means a significant increase on its complexity when

compared to other solutions based on lower levels of abstraction. Lately, several

proposals to improve the programmability of heterogeneous devices have been built

on top of OpenCL. A successful example of them is the Heterogeneous Programming

Library (HPL), a C++ framework that provides an easy and portable way to exploit

1
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heterogeneous computing systems [114]. The HPL back-end generates OpenCL code,

thus, HPL can be used to program the same devices as OpenCL.

OpenCL and the multiple proposals built on top of it allowed heterogeneous com-

puting to conquer effective functional portability, but this was just the first pitfall

to overcome. Different types of devices are built following different architectures,

each with its own particularities and capabilities. For example, computing elements

inside current multicore processors expect larger and more complex workloads than

those included in Graphic Processing Units (GPUs). A single OpenCL program

can be executed in both kinds of devices, but the workload distribution set in that

single code is very unlikely to fit the capabilities of computing units of both devices

at the same time. As a consequence, different hand-tuned OpenCL programs must

be written in order to obtain good performance in each device. However, it would

be preferable to develop a mechanism that allows users to write a single code and

then, in an automatic or at least automatable way, tune the code for different de-

vices. This capability is known as performance portability, and it is one of the most

important open problems in heterogeneous computing.

The purpose of this PhD thesis is to develop and evaluate three different solu-

tions to provide performance portability on heterogeneous devices. All of them are

based on applying typical source-to-source optimizations to codes parallelized for

heterogeneous devices. As part of this optimization process, the value of several

optimization parameters has to be tuned for each specific device. This tuning is in

fact what really optimizes the code for each device.

The first solution is OCLoptimizer, a source-to-source optimizer which can opti-

mize annotated OpenCL kernels with the help of configuration files that guide the

optimization process. The tool not only optimizes kernels for a given device, but it

is also able to automate the generation of functional host codes when only a single

kernel is optimized. As part of the optimization process, OCLoptimizer has to tune

the value of several optimization parameters. The search space of possible values for

these parameters can be explored using either a genetic algorithm or a breadth-first

search guided by the execution time of each version of the code.

The two remaining solutions are built on top of HPL. The first of these solutions

uses the run-time code generation capabilities of HPL to generate a self-optimizing
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version of a code that can optimize itself at run-time for an specific device. In this

solution, exemplified using the matrix multiplication, the exploration of the search

space of possible values of the optimization parameters is alway done using a genetic

search. The last solution is the development of a built-in just-in-time optimizer for

HPL that can optimize, at run-time, a HPL code for a specific device. The values

of the optimization parameters associated to this optimizer are set by means of

heuristics based on general optimization strategies.

The rest of this chapter is organized as follows. In Section 1.1 the reader can

go through the recent history of several computing device types, and how this evo-

lution led to the eruption of heterogeneous computing. Section 1.2 explains why

unified ways of programming these device types are needed and introduces some

proposals, focusing on OpenCL and the solutions built on top of it. Section 1.3

introduces the performance portability problem and explores different approaches

available to achieve it. Finally, the proposals and contributions of this thesis to

automate performance portability are presented in Section 1.4.

1.1. How and why heterogeneity arose

This section contains a brief review of the historical evolution of the different

kinds of heterogeneous devices. First, we focus on the recent history of conventional

CPUs and GPUs, then we review the recent developments on modern accelerators

and the usage of field programmable gate arrays, and finally we introduce the idea

of modern heterogeneous clusters.

The general-purpose processor

Traditional general-purpose processors have played the leading role in computing

history for many years. In the past, the application of concepts like pipelining, exe-

cution speculation, branch prediction, or the use of math co-processors for floating-

point operations made possible to exploit instruction-level parallelism. These efforts

made on hardware engineering had also a response in software development, where

multitasking support was enabled in operating systems.
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The sustained increase in silicon-based circuitry integration levels led to power

dissipation and consumption issues. These problems forced manufacturers to branch

from building more complex processors with higher clock frequencies to think of de-

signs gathering several computing units inside a same silicon die. A result of this

evolution were the multicore processors, which integrate several cores that have

a partially shared memory hierarchy. Frequently, upper cache levels are private,

whereas the lower ones and the main memory are shared. Multithreaded software

can take advantage of multicore processors by running different threads simultane-

ously in different cores and using common memory regions for data sharing. Thread

management operations are OS-dependent, and standards like OpenMP offer higher

level interfaces to write multithreaded codes. There are OpenMP implementations

available for FORTRAN [83] and C/C++ [84]. These implementations provide pro-

grammers with a set of compiler directives with which they can tag sections of their

programs to be run in multiple execution threads.

The Graphics Processing Unit (GPU)

In their early days, video cards were just devoted to do the essential work to get

texts and simple shapes drawn in computer displays, the CPU being in charge of

the rest of graphic processing. As times went on, software became more and more

complex, and so did the requirements of its graphical user interfaces. These increas-

ing requirements were gradually satisfied by adding specific circuitry units devoted

to accelerate particular stages of graphic pipelines to the display adapters. Earlier

implementations of these pipelines consisted in fixed units dedicated to their corre-

sponding processing stage, and no custom programming or reconfiguration was al-

lowed on them. These implementations became more and more sophisticated, which

led to CPUs being freed from executing graphic tasks. Programming interfaces like

OpenGL [95] or Direct3D [77] allowed complex graphic processes like 3D rendering

to be directly implemented and executed in video cards. When graphic pipelines

became so sophisticated that they needed their own programming mechanisms to

squeeze the capabilities of their different units, they became fully operational com-

puting devices and they started to be called Graphics Processing Units (GPUs).

Many tasks run by graphic pipelines units usually consist in parallel process-

ings of huge data collections, such as vector operations. The use of these massive
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parallel capabilities of GPUs to compute data streams from non-graphic problems

led to the idea of performing General-Purpose Computing on Graphics Process-

ing Units (GPGPUs). At the dawn of this new paradigm, graphic programming

interfaces depended on their own programming languages, like OpenGL Shading

Language [54], High Level Shader Language [24] or Nvidia Cg [66]. These languages

were thought to implement operations on a visualization matrix, so they relied on

abstractions like textures, geometries or projections. Such concepts are essential in

graphics processing, but their direct application to general purpose computing was,

at least, cumbersome, and sometimes even impossible. Despite these difficulties, the

potential shown by GPGPU computing encouraged its sustained development. As

a result, graphic pipelines with units fully capable of performing general purpose

computing tasks appeared, and with them, new programming frameworks like Close

To Metal [87], BrookGPU [12], Brook+ [4] and, above all, CUDA [80], which even

being a proprietary initiative only supported in NVIDIA devices, is nowadays the

largest player in the GPGPU computing market.

Modern accelerators: manycores and SoCs

Any computational problem must be characterized in order to choose the device

whose capabilities best match its requirements. For example, a GPU is expected

to deal with problems that are intensive in vector operations much better than a

CPU. However, branch prediction techniques usually implemented in CPUs make

them better to deal with algorithms with complex control flows. Nowadays, pro-

grammers are quite used to face the implementation of pipelined problems consisting

on several steps run iteratively, each step being often composed in turn of multiple

operations from which it is usually possible to extract parallelism in a massive way.

This way, there was room in the hardware market for a device that provided the kind

of massively parallel capabilities of GPUs, but which were X86-compatible, keeping

many of the interesting characteristics of traditional CPUs. Manycore accelera-

tors like they Intel Xeon Phi filled this gap and they offered a solution to compute

the aforementioned kind of problems in an integrated way [97]. This accelerator

is the evolution of a prior architecture designed by Intel called Larrabee, that was

conceived as an attempt to build a GPU-like device by combining several x86 mul-

ticore processors. That dual conception allows programmers to exploit parallelism
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in Xeon Phi by means of both multithreading (e.g., OpenMP) and multiprocessor

(MPI) approaches.

Just as advances in integration levels allowed complete CPUs to be gathered into

a same silicon die, manufacturers have also been working on the integration of units

originally devoted to different functions in the same die, which lead to the creation

of the so-called Systems-on-a-Chip (SoCs). For example, during the last years AMD

has worked on the development of their Accelerated Processing Units (APUs), which

integrate a multicore CPU and a GPU in a single chip. There has been other

noteworthy developments in this field, albeit they are rather oriented to increase the

computing power of mobile devices. Examples are the ARM Cortex, NVIDIA Tegra,

or Qualcomm Snapdragon families. Interestingly, efforts to exploit the capabilities

of these new architectures in high performance computing environments are being

made too. For example, AMD, ARM and Qualcomm created the HSA Foundation

as a shelter for their Heterogeneous System Architecture initiative [47]. This new

architecture generalizes the idea of SoC as a combination of “latency” (i.e., CPUs)

and “throughput” (i.e., GPUs) computing units, and provides hardware with a high-

level programming infrastructure that relies on a full stack of multiple compilers,

intermediate representations and low-level programming languages.

Field Programmable Gate Arrays

There are problems in fields like signal processing, medical imaging, or cryptog-

raphy, that have very specific computing needs. While CPUs, GPUs or accelerators

are able to provide efficient solutions for them, these problems must be also solved

in real-time or embedded systems that cannot devote these resources to them. Be-

cause of that, these systems resort to specific-purpose integrated circuits to deal with

them. However, these algorithms are so specific that such integrated circuits cannot

be used to execute other applications, which implies an increased cost in the hard-

ware. Field Programmable Gate Arrays (FPGAs) provide a solution to this issue.

They are integrated circuits composed of a number of interconnected logic blocks

in which any combinational boolean function can be implemented. Programmers

can customize the behavior of these devices by providing an extensive description of

both the boolean functions to be implemented by the logical blocks and how they

are connected. Manufacturers offer the so-called hardware description languages
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(HDLs) in order to define such behavior, VHDL [9] and Verilog [16] being the most

common.

Putting things together: heterogeneous clusters

Cluster computing, which is based on interconnecting several computers with

multicore processors, is quite popular nowadays. In such systems it is very common

to use standards both at the intranode and the inter-node levels. For example,

OpenMP is widely used to extract fine-grain parallelism from multicores, while the

Message Passing Interface (MPI) [70] coordinates the collaborating nodes. Moreover,

during last years adding to these nodes devices like GPUs or other accelerators

became a trend, giving place to the so-called heterogeneous clusters. For example,

two of top three entries of the November 2016 release [112] of the TOP500 list

followed that approach.

1.2. Towards a unified programming approach

Every kind of computing device has its own defining characteristics, and in many

cases these characteristics set strict conditions on the mechanisms available to ex-

ploit their capabilities. For example, a programmer writing explicit parallel code

will have to resort sooner or later to facilities to coordinate parallel tasks. Similarly,

physical circuit reconfigurations will be required when working with FPGAs. It has

been also already explained that the specific capabilities of each device type must

be matched to the characteristics of the problems to be addressed by means of such

devices, so that the user will eventually need to deeply dive into the specific proper-

ties or architectural details of a particular device in order to efficiently program it.

Nevertheless, programmers want to write algorithms in the most simple and intu-

itive way. For this reason, improving the programmability is a big issue in modern

heterogeneous systems.

Some proposals in this field leave compilers in charge of nearly all the details

about generating device-specific code, so that users only have to indicate which parts

of their programs are going to be parallelized. Such proposals are usually based on

directives and they are derived from the OpenMP standard. One example is Ope-
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nACC, a directive-based standard [82] generalized for multiple types of massively

parallel processors such as GPUs, multicores or manycore accelerators. OpenACC

directives can be used in C/C++ or Fortran programs in order to extract parallelism,

underlying compilers being responsible of finding particular optimizations compati-

ble for both the language and the architecture. This feature is its main advantage

and, at the same time, its main drawback, since programmers must trust blindly in

the optimization capabilities of the compiler, and sometimes they are more based in

theoretical platitudes than in real device-specific properties. OmpSs [13] is another

directive-based proposal to program heterogeneous systems created as an effort to

extend OpenMP by supporting complex dependency patterns, heterogeneity [14]

and data movement for task parallelism. Concurrently with the development of

these new directive-based approaches to heterogeneous systems programming, such

capabilities were steadily added to the OpenMP standard itself. Thus, version 4.0

introduced a whole set of directives that allowed users to distribute loop iterations

among device threads, to pack those threads in groups called teams or to manip-

ulate device-owned data structures. Released in 2015, OpenMP 4.5 is the latest

version of the standard and it improves those device memory management capabil-

ities, by complementing directives with explicit routines to allocate, deallocate and

map structures to device memory as well as to perform data transfers [85].

Other solutions try to solve the problem by defining an abstraction where all

the available devices can fit, together with a common programming model based on

it. The OpenCL standard, introduced in [55], proposes a heterogeneous computing

architecture that follows that approach. On the hardware side, a computing plat-

form is modeled as a combination of one or more devices. Each device is structured

in compute units composed of several processing elements, those elements being

in charge of eventually running the computation of a stake of the addressed prob-

lem. On the source code side, OpenCL offers a programming model in which each

processing element executes several instances of a code snippet called kernel that

implements the computation to be executed by the device. The way the capabilities

of any device or combination of them are exploited depends on how have users writ-

ten those kernels in order to distribute the solution space of their problems among

the processing elements. Moreover, users must also write a host code that is in

charge of operations such as device lookup and selection, management of input and

output memory buffers, or queuing of kernel execution requests. A more detailed
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explanation about the OpenCL architecture is provided in Section 2.1.

The flexibility of the OpenCL standard has allowed the manufacturers of differ-

ent devices to provide their own implementations. Thus, Intel offers drivers and full

software development kits [49] for their CPUs (both with and without integrated

GPUs), Xeon Phi manycores, and even the FPGAs [50] they inherited from Altera

after their acquisition in 2015. Altera was the pioneer company on giving OpenCL

support for FPGAs [3]. In a similar way, AMD offers both drivers and the Accel-

erated Parallel Processing platform for its CPUs, GPUs and APUs [7]. OpenCL

support is also included in NVIDIA GPU drivers [79]. ARM does not give support

for it in Cortex SoCs yet, although an SDK for Mali GPUs is available [8]. OpenCL

code can also be run on Qualcomm Adreno GPUs [90], one of the components of

their Snapdragon SoCs. Thanks to such a variety of supported devices, OpenCL

has a substantial codebase [45] that covers problems from different academic and

industrial fields. There are OpenCL implementations for complex computational

physics problems [41], financial simulations [72], mathematical libraries [19], deep

learning applications [88], image and signal processing [91], and much more.

OpenCL offers a set of models and programming mechanisms that are generic

enough to allow programmers to write any code once, and then run it on any kind of

device with OpenCL support [22], although it has been shown that this is not always

so simple [102]. Thus, a deeper analysis of the OpenCL codebase shows that in many

cases these programs are just OpenCL translations, and they keep too many device-

specific details from the original implementation. This is mainly related to how

programmers are made responsible for the control of the interactions between the

host system and the compute devices available. This control must be implemented

in the host code by means of a low-level API that relies on programmers having an

exhaustive knowledge about an important number of issues such as devices, kernels,

memory objects, or command queues. This leads to quite verbose and error-prone

host codes [76]. In other words, the adaptation that host codes need depending on

the devices available on each computing platform eventually hinders the expected

OpenCL code portability.

Some tools built on top of OpenCL aim to improve its performance portabil-

ity and, at the same time, its programmability. Some of them are libraries that

use OpenCL to implement specific algorithms and operations. For example, Vien-
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naCL [94] implements basic linear algebra operations (BLAS). Another example is

the mathematical package clMath [6] from AMD, that besides the BLAS operations

offers implementations of other operations like sparse algebra routines, fast Fourier

transforms or random number generation.

Other tools define skeletons of common computing patterns. The back-end of

these approaches generates the corresponding OpenCL code. In these approaches,

programmers have to write their codes using these skeletons, which are available

through an embedded language or an API. Examples of this are SkelCL [105],

SkePU [25] or Marrow [67].

Other group of solutions are domain-specific. For example, PARTANS [64] is

based on skeletons to express stencil computations, which are the main building

blocks of thermodynamic simulations. HALIDE [91] is a domain-specific language

(DSL) for expressing image processing computations.

Other solutions are more focused on making the usage of the OpenCL API

easier. For example, PyOpenCL [57] implements a Python version of the OpenCL

API, which is simpler than the original ones for C and C++. Other tools [119, 63]

go a step further and try to hide the API by automating its management.

There are also approaches based on compiler directives built on top of OpenCL,

like accULL [93], an implementation of the OpenACC standard [82] able to ex-

tract the parallelization demanded with such directives by means of OpenCL code

generated at runtime.

Finally, the Heterogeneous Programming Library (HPL) [114] is a C++ frame-

work that provides an easy and portable way to exploit heterogeneous computing

systems on top of the OpenCL standard. In HPL, kernels can be written either

in OpenCL [117] or in an embedded language built on top of C++ that follows

the same programming model as OpenCL. In the latter case, the effective OpenCL

implementation of the kernels is generated at run-time as soon as users invoke their

execution using the C++ API provided. Moreover, the HPL API considerably sim-

plifies many of the management operations that make OpenCL host code quite ver-

bose and error-prone. It is worth highlighting the efforts made in order to automate

memory management, so that users hardly have to worry about declaring the struc-

tures needed for data input and output. Thus, the validity of HPL as a mechanism
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to improve OpenCL programmability has been largely proved both in multi-device

environments in a single node [116] as well as in heterogeneous clusters [115].

1.3. Performance portability

A truly portable programming approach for heterogeneous systems needs: (1) a

unified programming mechanism that allows to implement any kind of problem in

any kind of device, and (2) some way to ensure that the code written using such

programming mechanism efficiently exploits the capabilities of the available devices.

Several tools introduced in Section 1.2, mainly OpenCL and all the solutions

built on top of it, effectively address the first issue, or, in other words, they are

functionally portable. The second issue, however, is more difficult to tackle. The

only way users have to ensure that their codes are fully optimized for a particular

device is to tune them by hand, which requires both a thorough knowledge of hard-

ware architectures and a tough programming effort. Thus, users would considerably

benefit from some kind of framework able to tune their codes to some extent de-

pending on the capabilities of the underlying devices. A framework compliant with

such features may be termed as performance-portable.

A motivating example on top of OpenCL

OpenCL is said to provide functional portability as, with some limitations, the

same kernel code can be run on several devices if they support OpenCL. Unfor-

tunately, OpenCL does not provide automatic performance portability. This way,

there is no guarantee that a given OpenCL code will achieve good performance no

matter the kind of device, or in devices of the same kind but from different vendors,

or even from the same vendor but with different architectural designs [22]. Moreover,

a thorough knowledge about both device capabilities and problem characteristics is

fundamental to maximize the performance of codes.

Thus, the natural point of departure to tackle this issue is to take the initial

naive OpenCL implementation of a problem and try to apply general optimizations

that are expected to be beneficial for a particular kind of device. This approach
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Kernel version (Listing)
Device type

GPU CPU
(AMD FirePro S9150) (Intel Xeon E5-2650v2)

Naive baseline (Listing 1.1) 100% 100%

CPU-friendly (Listing 1.2) 4% 123%

GPU-friendly (Listing 1.3) 701% 73%

Table 1.1: Impact of optimization techniques on naive kernel performance

should improve the performance of the code in that device, but if we try to run

this optimized version on another device the performance may not be so good.

Furthermore, it is usual that optimizations which are beneficial on some devices, are

quite detrimental on others [99, 36].

A running example based on a naive matrix multiplication OpenCL kernel will

illustrate this situation. Three versions of the code are used in this test: a naive one,

and another two optimized to some extent for an Intel Xeon E5-2650v2 CPU and an

AMD FirePro S9150 GPU, respectively. Table 1.1 compares the relative performance

of the three implementations on both devices. The naive version is the baseline of

this comparison and its performance in both platforms is 100%. The performance of

the other two versions is expressed as a relative percentage to this baseline, so that

values greater than 100 imply better performance, while values below the baseline

indicate slowdowns.

In the naive version, shown in Listing 1.1, the loop in lines 9-10 performs a dot

product to compute a single point of the resulting matrix, and work is distributed

among as many threads as positions the resulting matrix has. In OpenCL termi-

nology, the lightweight threads that perform the work implemented in a kernel are

called work-items. Regarding the optimizations, CPU cores are expected to take

advantage of coarser-grain work distributions [60, 99]. Since the CPU used in this

example is from Intel, its OpenCL optimization guide [51] is a good source for ad-

vice about how to achieve such work distribution. A first guideline given in that

document is to let the OpenCL runtime infer a suitable amount of work-items to

be packed together in a work-group, which is the term for such packs in OpenCL.

The runtime should maximize the work that each core performs by assigning to it

work-groups with as many work-items as possible. A fine-grained kernel will maxi-
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1 __kernel void matmul(__global float* c,

2 __global float* a, global float* b,

3 int M, int N, int K)

4 {

5 size_t idx = get_global_id (0);

6 size_t idy = get_global_id (1);

7 int k;

8 (c[idy*N+idx] = 0.0f);

9 for(k=0; k<K; k++)

10 c[idy*N+idx] += a[idy*K+k]*b[k*N+idx];

11 }

Listing 1.1: Matrix multiplication OpenCL kernel: naive version

mize the number of work-items available for the OpenCL runtime to pack, and this

should favor such a work distribution. The naive version was run in the CPU fol-

lowing this approach. Keeping this idea in mind, the guide also encourages users to

try different values for that work-group size, since sometimes configurations outper-

forming the runtime-selected one can be found by hand. This way, the performance

of OpenCL kernels in CPUs can be often improved by manually setting such coarse-

grained distributions and applying additional common CPU-friendly optimization

techniques.

The code in Listing 1.2 shows a version of the kernel that has been optimized

following this latter approach. Thus, the loops in lines 22 and 24 are distributing

blocks of 128×64 positions among the threads, which increases the work performed

by each work-item. Tiling is another popular technique applicable to this code in

CPU because it improves the performance of the cache hierarchy, as information is

accessed per tiles. Thus, the dot product is computed in tiles of 8 elements. The

loop in line 20 traverses the tiles, and each tile is computed by the loop in line 25.

In addition, the naive version stores the result in the original global array c, but this

is very inefficient because each position of c has to be written several times. In this

new version, the computation is written on a private array pc, which is initialized

in lines 14-18, and the results are copied to array c at the end of the kernel, in lines

34-38. Table 1.1 shows that this CPU-optimized version runs 23% faster than the

naive one on the CPU, whereas it runs 25 times slower on the GPU.

In turn, GPUs prefer the work to be divided among a larger number of threads,

each having a lower workload. Moreover, such devices have available an special type
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of faster memory, called local memory in OpenCL terminology, which is shared

among each group of processing elements. Listing 1.3 shows a matrix multiplication

optimized for a GPU. The main changes in this version with respect to the CPU-

friendly one are that it uses more threads with a finer grain (blocks of 4×4 positions),

that the tile size is tuned for the GPU, and that it exploits the aforementioned local

memory to optimize accesses to both a and b. This way, all the threads of the same

group collaborate to copy slices of a and b to their local memory counterparts la

(lines 27-31) and lb (lines 32-36). Line 37 contains a barrier to synchronize all the

threads of the same group that collaborate in the copy. The main computation in

line 43 uses now these local arrays la and lb instead of the global ones a and b.

1 __kernel void matmul(__global float* c,

2 __global float* a, global float* b,

3 int M, int N, int K)

4 {

5 size_t idx = get_global_id (0);

6 size_t idy = get_global_id (1);

7 size_t szx = get_global_size (0);

8 size_t szy = get_global_size (1);

9
10 __private float pc [128][64];

11
12 int py,px ,kk,k,y,x;

13
14 for(py=0; py <128; py++) {

15 for(px=0; px <64; px++) {

16 pc[py][px] = 0.0f);

17 }

18 }

19
20 for(kk=0; kk<K; kk+=8) {

21 py = 0;

22 for(y=idy *128;y<((idy *128)+128);y++) {

23 px = 0;

24 for(x=idx *64;y<(( idx *64)+64);x++) {

25 for(k=kk; k<kk+8; k++) {

26 pc[py][px] += a[y*K+k]*b[k*N+x];

27 }

28 }

29 px++;

30 }

31 py++;

32 }

33
34 for(py=0; py <128; py++) {

35 for(px=0; px <64; px++) {

36 c[((idy *128)+ py)*N+((idx *64)+px)] = pc[py][px];

37 }

38 }

39 }

Listing 1.2: Matrix multiplication OpenCL kernel: CPU-friendly optimizations
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1 __kernel void matmul(__global float* c,

2 __global float* a, global float* b,

3 int M, int N, int K)

4 {

5 size_t idx = get_global_id (0);

6 size_t idy = get_global_id (1);

7 size_t lidx = get_local_id (0);

8 size_t lidy = get_local_id (1);

9 size_t szx = get_global_size (0);

10 size_t szy = get_global_size (1);

11 size_t lszx = get_local_size (0);

12 size_t lszy = get_local_size (1);

13
14 __local float la [64][32];

15 __local float lb [32][64];

16 __private float pc [4][4];

17
18 int py,px ,kk,k,lr,lc,y,x;

19
20 for(py=0; py <4; py++) {

21 for(px=0; px <4; px++) {

22 pc[py][px] = 0.0f);

23 }

24 }

25
26 for(kk=0; kk<K; kk+=32) {

27 for(lr=lidy;lr <64;lr+=lszy) {

28 for((lc=lidx);lc <32;lc+=lszx)) {

29 la[lr][lc] = a[((idy/lszy )*64)+ lr][kk+lc];

30 }

31 }

32 for(lr=lidy;lr <32;lr+=lszy) {

33 for((lc=lidx);lc <64;lc+=lszx)) }

34 lb[lr][lc] = b[kk+lr][(( idx/lszx )*64)+ lc];

35 }

36 }

37 barrier(CLK_LOCAL_MEM_FENCE );

38 py = 0;

39 for(y=idy*4;y<((idy *4)+4);y++) {

40 px = 0;

41 for(x=idx*4;y<((idx *4)+4);x++) {

42 for(k=0; k<32; k++) {

43 pc[py][px] += la[(lidx *4)+py][k]*lb[k][( lidx *4)+px];

44 }

45 }

46 px++;

47 }

48 py++;

49 barrier(CLK_LOCAL_MEM_FENCE );

50 }

51
52 for(py=0; py <4; py++) {

53 for(px=0; px <4; px++) {

54 c[((idy *4)+py)*N+(( idx *4)+px)] = pc[py][px];

55 }

56 }

57 }

Listing 1.3: Matrix multiplication OpenCL kernel: GPU-friendly optimizations
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Line 49 contains a barrier to synchronize the threads of the same group before the

computation of a new tile of the result starts. Table 1.1 shows that this GPU-friendly

version is about 7 times faster than the naive one. However, it suffers from a 27%

slowdown in the CPU, probably due to the overriding of the default cache behaviour

of the device by the local memory exploitation strategy implemented.

In summary, both CPU and GPU-friendly kernels have been generated by ap-

plying suitable optimization techniques to a naive implementation but, when the

optimizations applied were not aligned with the capabilities of each device, the per-

formance of the versions obtained decreased notably. This shows how the selection

of both the optimization techniques for each device and the configurations to apply

them is crucial to achieve good performance across different devices, or, in other

words, to achieve performance portability.

A multifaceted domain

As we have just concluded from the previous example, achieving performance

portability in heterogeneous environments by means of OpenCL involves finding

different versions of kernels that are tuned for the different devices available. Thus,

many proposals are built on top of OpenCL aiming not only to enable performance

portability but, in some cases, also to automate it or, at least, to provide mechanisms

to facilitate such automation.

Multiple aspects characterize these proposals. Some of them are quite domain-

specific, whereas others present themselves as extensively general-purpose. Either

specific or generic, at some point along their workflows these proposals must im-

plement code generation procedures. Such procedures are needed to transform user

inputs to OpenCL equivalents able to run in different devices. Once the code gen-

eration mechanism is set, challenges about code optimization arise. The motivating

example showed how optimizations can be designed as code transformations depend-

ing on parameters, and how by choosing the appropriate optimizations and tuning

the values given to such parameters it is possible to generate multiple versions op-

timized to some extent for different devices. Some common optimization strategies

were introduced in the motivating example. In turn, finding proper values for the

optimization parameters is a tricky issue that depends noticeably on code proper-
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ties and device capabilities, so that proposals usually include more or less complex

mechanisms to select tuned values for such parameters. Most of these algorithms

perform some kind of evaluation of the versions they generate, real code executions

and performance analysis being the most common.

Let us start our review of the related bibliography on performance portability by

describing some solutions based on domain-specific languages (DSLs). For instance,

HALIDE [91] is a DSL for image processing built on top of C++. It generates

optimized code at run-time for multiple kinds of devices on both single and multi-

device environments, OpenCL being one of the back-end options for GPUs. Its

compiler is driven by an iterative auto-tuner that performs a genetic search to find

an optimized schedule for a program. The configuration of each schedule defines the

parameter values for the optimizations, which include work distribution, vectoriza-

tion or loop unrolling. To be tested, schedules are lowered to LLVM intermediate

representation, and then the back-end code is generated from it. Research about

less time-consuming alternatives for that search process, based on code analysis and

user guidance have been also conducted [73].

Other domain-specific proposals expose their capabilities by means of libraries.

Such approach is very common in the linear algebra domain, ViennaCL [94] and

clBLAS [19] being two representative examples built on top of OpenCL. Research

on parametrized optimization of this kind of kernels is extensive, specially for the

matrix multiplication routines [23, 59, 68, 69, 92, 107]. The parameters of this code

are related to aspects like work distribution, which matrices must be cached in slices

to local memory and the size of those slices, vectorization of different stages of the

kernel, or loop tiling and unrolling. Thus, exhaustive search processes were run over

parametrized implementations of such routine in ViennaCL [110]. Results of this

work were processed and bundled into a heuristic auto-tuner distributed with the

library. In turn, clBLAS offers default well-performing versions based on general

optimizations, although it also includes a profiler that can be run to characterize

the available devices and adapt its kernel generation to them.

A third approach for building domain-specific solutions consists in implementing

specific optimization strategies for recurring computing patterns from a domain, and

then asking users to write their programs in terms of such patterns. For instance,

PARTANS [64] is an auto-tuning framework for stencil computations on multi-GPU
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systems. Users must write their stencil operators in OpenCL kernels, which can be

composed in algorithms and run by means the C++ API provided by the frame-

work. The code of these kernels has to be written in terms of some macros provided

by the framework. These macros represent domain-specific concepts like the ori-

gin point of the stencil operator or the different offsets from that origin in each

dimension. Similarly to what happens in HALIDE, the auto-tuning process does

not search directly for optimized values for these macros. Instead, it tunes both the

task partitioning and the parameters for other domain-specific optimizations, the

values for the macros being inferred from the optimized configuration found. The

auto-tuning process in PARTANS has both offline and online stages. One of the

steps of the first stage optimizes the task partitioning, the decision depending on

exhaustively generating and running all the possible stencils. The online stage, in

turn, optimizes some domain-specific aspects, and can be performed by means of

exhaustive, hill climbing, or dichotomous search algorithms.

The scope of this approach can be broadened by looking for more recurring

patterns. This is the idea behind SkelCL [105], a portable skeleton library for single

and multi-GPU [106] environments. It offers data-parallel algorithmic skeletons for

map, zip, reduce, scan and allpairs [104] operations, among others, in form of highly

optimized OpenCL kernels. Users have to think their algorithms in terms of such

operations and write their program using the C++ API provided. By design, this

library does not support the parametrized tuning of each individual kernel, but any

performance adaptation relies on hard-coded rules to distribute tasks among the

available GPUs.

Regarding other high-level solutions, many approaches are able to manage to

some extent programs originally written in or on top of common high-level languages

like C, C++ or FORTRAN, while others are auto-tuners that expect OpenCL ker-

nels as input. An example of the former is a multi-objective auto-tuning framework

developed by Jordan et al. [52] on top of the Insieme [86] compiler infrastructure.

This framework can receive as inputs programs written in C, C++, OpenMP, MPI,

and OpenCL, which are loaded into an intermediate representation defined by the

Insieme compiler. The code is analyzed and decomposed in regions susceptible to

be optimized. The optimizations applied to each region depend on parameters like

unroll factors or work granularity. An iterative algorithm based on evolutionary
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methods and pruning mechanisms looks for tuned configurations for these parame-

ters. Versions are evaluated by running them on the target device. All the search

process is performed online as a part of the program compilation, resulting in a num-

ber of configurations that are selected and translated to C, OpenCL or MPI code

by the compiler back-end. The decision about which version is picked as optimal

remains application-specific and could be forwarded to the user.

Fang et al. propose Sesame [36], a framework that bundles knowledge obtained

after a systematic study on the optimization space for many-core devices. This study

evaluates the impact that the vector capabilities of processors [33] or the usage of

local memory chips [32] usually included in heterogeneous devices have on the per-

formance of OpenCL kernels. Regarding local memory exploitation, they build some

tools that operate on OpenCL kernels either to enable it [34], or to disable or make

it more general [31]. The code analysis and transformation operations performed

by these tools are implemented by means of the LLVM infrastructure, whereas the

information for auto-tuning comes from micro-benchmarking. The framework ex-

pects OpenCL kernels as inputs as long as the included tool does it also, but the

extensible design allows to support codes written in other high-level languages.

CLTune [78] is a tool particularly devoted to auto-tune OpenCL kernels in a

parametrized way. Users must define which parameters they consider that may

affect the performance of their codes, and then refactor their kernels in terms of such

parameters. The tool also provides a high level interface that hides some details of

the OpenCL host API. Ranges of valid values for each parameter have to be specified

through this interface. The strategies implemented to tune the parameter values for

a device are a randomized search, a simulated annealing technique and a particle

swarm evolutionary algorithm. The three strategies use the execution time of the

versions generated as evaluation criteria.

OrCL [17] is an auto-tuner for OpenCL kernels built on top of Orio [44], an

extensible optimization and auto-tuning framework. As an extension of Orio, users

must annotate their kernels with a thorough description that includes, among other

details, the optimization parameters, how these parameters are mapped to the dif-

ferent optimizations supported by the tool, and the performance counters used to

evaluate the versions generated. All the code transformation procedures are also in-

herited from Orio, and they are based on lightweight independent Python modules
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rather than on a typical full compiler infrastructure. The optimization parameters

can be tuned by means of exhaustive, randomized, simplex, and simulated annealing

search algorithms. The versions generated are evaluated through the TAU perfor-

mance measurement system [100] taking into account their execution times, although

users can choose other counters overriding this behavior in their code annotations.

Other high-level solutions, in turn, ask users to rewrite their codes in their own

description languages. For instance, the Many-Core Levels (MCL) framework de-

veloped by Hijma et al [46], is composed of the Many-Core Programming Lan-

guage (MCPL), an imperative and C-like embedded language to write kernels for

heterogeneous devices, and a compiler able to optimize them with a collection of

code transformations ranging from common general optimizations to device-specific

tweaks. The framework is also the test bed for the stepwise-refinement for perfor-

mance optimization methodology, which is based in an iterative process in which
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HALIDE 3 3 3 3 3

ViennaCL 3 3 3 3 3 3

clBLAS 3 3 3 3 3

PARTANS 3 3 3 3 3 3

SkelCL 3 3 3 3 3 3

Jordan et al. 3 3 3 3 3 3 3

Sesame 3 3 3 3 3

CLTune 3 3 3 3 3 3

OrCL 3 3 3 3 3 3

MCL/MCPL 3 3 3 3 3

Steuwer et al. 3 3 3 3 3 3

Table 1.2: Summary of performance-portable proposals described
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the compiler proposes from more general to more specific optimizations and pro-

vides feedback about the potential performance achievable. Once the user picks an

optimization, the compiler applies it, and depending on the optimization picked and

on the device properties, a new set of more specific optimizations is presented. At

the end of the process the kernel is translated into OpenCL or C++ source code.

Steuwer et al. propose in [103] a functional high-level notation to describe prob-

lems in a simple way, and a whole set of rewrite rules to transform such a simple

description in a dense λ-calculus expression. Each primitive in the expression is

mapped to parametrized routines that generate OpenCL code snippets. Such pa-

rameters represent, for instance, local workspace sizes or vector lengths. Thus,

a working OpenCL code results from the evaluation of the input expression. In

order to obtain optimized versions, three consecutive search processes must be per-

formed. First, the search space of some general optimization rules is heuristically

pruned. Then, another heuristic is applied to prune the options to implement such

rules in OpenCL. Finally, parameter values are selected by pruning again the search

space and exhaustively generating and executing all the remaining versions. A

performance-portable matrix multiplication has been generated as a test case for

this approach both on CPUs and on several desktop [92] and mobile GPUs [107].

1.4. Thesis approaches and contributions

As Table 1.2 summarises, the discussion on the handful of solutions for perfor-

mance portability in the previous section revealed that there are multiple approaches

in this field. The tools presented in this PhD Thesis are built combining some of

these approaches, namely:

Source-to-source transformations To be termed as source-to-source, any tool of

this kind must receive high-level language programs and returns them modified

in some way, but still written in either the same or a different high level

language. In this Thesis we explore several mechanisms to transform user

kernels written in high-level languages into OpenCL versions optimized for

different devices.
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Parametrized optimizations In general, optimizations depend on some config-

uration parameters that define whether the input code is going to be trans-

formed or not, and if so, also the way it will perform when executed. Let us

remind the motivating example from Section 1.3. There, the transformation

applied to adjust work granularity in a kernel was the same no matter the

device, but the particular block size was set differently for each device. In this

case, the block size worked as a parameter. Thus, optimizations of this kind

become parametrized optimizations.

Search methods to find suitable optimizations Achieving performance porta-

bility involves selecting a proper set of optimizations depending on code prop-

erties and device capabilities. Since the transformations performed to optimize

codes are parametrized, methods to find suitable values for such parameters

become fundamental. In this Thesis we explore different options to perform

this task, namely exhaustive and informed search algorithms, as well as heuris-

tics based on general strategies to optimize codes for heterogeneous devices.

High-level user interfaces The host API offered by OpenCL relies on many low-

level operations, and inexperienced users may struggle to deal with it. This

PhD Thesis explores different alternatives to discharge users from these tedious

and error-prone tasks or, at least, to reduce them to a minimum extent.

Thus, three different tools intending to improve performance portability on het-

erogeneous environments were developed. The first one, OCLoptimizer, is built on

top of OpenCL and the LLVM-Clang compiler infrastructure [62]. It receives user-

annotated OpenCL kernels and a configuration file, and it generates tuned OpenCL

kernels. The other two proposals exploit different features of the Heterogeneous Pro-

gramming Library (HPL). First, we developed self-adaptive HPL kernels. The run-

time code generation capabilities of the library allow users to bundle parametrized

optimizations in their kernels, and depending on the values set for these parameters,

the versions generated can be tuned for different devices. Second, a just-in-time op-

timizer was embedded in the HPL workflow. Namely, the optimizer modifies the way

the library generates OpenCL kernels. Thus, users are expected to write naive HPL

kernels that, before being translated into OpenCL code, can be tuned by means of

parametrized transformations performed by the optimizer. Parameter values are set
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by means of heuristics. Now, the main features of each tool and how it combines the

aforementioned approaches to performance portability are discussed.

1.4.1. OCLoptimizer

This tool is a source-to-source optimizer that both receives and produces OpenCL

kernels. Its users are expected to annotate their OpenCL kernels with directives that

tag the sections to be optimized and specify the techniques to apply. OCLoptimizer

also requires configuration files with information about the kernels and the environ-

ment. The code analysis and transformation operations were built on top of the

LLVM-Clang compiler infrastructure. In order to optimize a kernel, the tool first

loads it by means of Clang into an abstract syntax tree (AST). The nodes of this tree

include default methods to rewrite it again as OpenCL code. For each optimization

supported, the tool implements a version of such methods. This way, in order to

generate the optimized version of a kernel, the tool asks the AST of the kernel to

rewrite itself applying these methods. When nodes representing annotated sections

are visited during the rewriting process, overridden methods are called and sections

are rewritten in their optimized form. These optimizations are parametrized, so that

codes can be tuned for a particular device by choosing appropriate values for these

parameters. The exploration of the search space of the parameter values can be

performed using either exhaustive or genetic algorithms. Moreover, since versions

are evaluated according to their execution time, the tool is able to automate the

generation of working OpenCL host codes. This makes users free from dealing with

the tricky OpenCL host API details.

In a first iteration [26], the unroll and unroll-and-jam optimization techniques

were included in this tool. This allows to unroll the loops tagged with the cor-

responding annotation, the unroll factor being the parameter that drives the code

rewriting process. The tool supports two search processes to select the unroll factors

to apply to each annotated loop, namely either a breadth-first search or a genetic

algorithm. In the first case, the optimization space is visited in a loop-by-loop ba-

sis: when the first annotated loop is found, it is unrolled and different versions are

generated and tested, the rest of the loops remaining untouched. Then, the fastest

version, or a number of them that can be chosen by the user in the annotation, is
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selected to advance to the next iteration of the optimization process, which starts by

unrolling the next annotated loop found in the generated version. The process stops

when all the annotated loops have been unrolled. Then, the version with the short-

est execution time is selected as optimal. When the search is performed by means of

the genetic algorithm, the optimization process is simpler, since the algorithm tries

different combinations of factors, applies them to unroll all the annotated loops, and

runs the generated version to evaluate it.

After a second iteration [29], two new major features were added. First, the

parametrized optimization approach was extended in order to find also optimized

configurations for the OpenCL workspace. This optimization is performed prior to

the application of loop unrolling, and requires additional information in both the

user kernels and the configuration file. Regarding the kernels, users must write them

using some special macros. The tools needs these macros to modify the iteration

distribution for the target device and the workspace configurations chosen. Both an

exhaustive search and a genetic algorithm can be run to find an optimized workspace

configuration. The limits of this search process are specified by the user in the tool

configuration file. Once an optimized workspace configuration is selected, the kernel

with the corresponding iteration distribution and the user annotations is taken as

input for the optimization process already implemented in [26]. As a second new

feature, the tool was extended with support for optimizing programs composed of

several kernels. For this, the workflow of the tool varies depending on whether the

input kernels are independent or inter-dependent. When the kernels are indepen-

dent, separate annotated codes and configuration files must be provided for each

kernel. At the end of the process both an optimized workspace configuration and

an optimized kernel are identified for each input kernel. Nevertheless, when kernels

are inter-dependent, the optimization process must be divided into two steps. First,

each kernel is optimized separately using the annotated code and a configuration file

as inputs. At the end of this step, the optimized workspace configurations obtained

for each kernel are kept, and the optimized versions of the kernels are used as inputs

of the second step, in which the annotated kernels are effectively optimized. The

complexity of the optimization process for several kernels makes the tool unable to

generate a single working host code for the whole application.
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1.4.2. Self-adaptive HPL kernels

The Heterogeneous Programming Library (HPL) provides an easy and portable

way to exploit heterogeneous computing systems. Kernels can be written in an

embedded language built on top of C++, and they follow a programming model

based on work-items like that of OpenCL. The effective OpenCL implementation of

HPL kernels is generated at run-time when users request their execution by means

of the high-level C++ API provided.

Users can exploit the run-time code generation (RTCG) capabilities of the library

by combining properly in their kernels sentences written in the embedded language

and in regular C++. Thus, sentences involving data types and functions from the

embedded language are translated into OpenCL code, whereas those written in

regular C++ can be used to control some aspects of the OpenCL code generation.

This allows users, for example, to select one among a number of different HPL code

snippets to be eventually translated. Notice that decisions about code generation

taken in these C++ sentences can be somehow parametrized, for example, depending

on the kind of device. This feature opened the door for parametrizing optimizations

inside HPL kernels.

Thus, in a first iteration [28], a first set of parametrized optimizations were

designed and used to implement a matrix multiplication kernel in HPL. In this

first experience with HPL, depending on the values assigned to the corresponding

parameters, work distribution can be adjusted, compute loops can be both tiled

and unrolled, and none, one or both input matrices can be copied in chunks to the

local memory. Experiments performed with the OCLoptimizer tool showed that

exhaustive search methods could be extremely time-consuming. For this reason,

in this case the values for a total of ten optimization parameters are found only

by means of a genetic algorithm. Thus, each time the algorithm needs to test

a combination of values, it launches the HPL kernel to execution. The library

generates the corresponding OpenCL version according to the values set for the

parameters, and then runs it in the target device. As for the genetic algorithm, as

usual, the faster the generated version is, the better. Thus, by finding proper values

for the parameters, the kernel is able to adapt by itself to the capabilities of different

target devices.
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In a second iteration [27, 30], new parametrized optimizations were designed and

included in the self-adaptive matrix multiplication kernel. Here, loop interchange

and instruction scheduling optimizations were also applied to the compute loops of

the kernel. Moreover, both local memory accesses and compute loops could be vec-

torized with independent vector lengths. The genetic search algorithm was updated

to take into account the parameters of these new optimizations, now increased up to

a total of fourteen. Also, some restrictions to avoid illegal parameter combinations

and to prune the search space are added. In order to assess the validity of this

solution, the performance of both the adaptation process and the generated kernels

was compared to those of ViennaCL 1.5.1 and clBLAS 2.4.

1.4.3. HPL-embedded just-in-time optimizer

In the original implementation of HPL the user kernels written with its embedded

language are translated at run-time into OpenCL code by means of the Portable

Expression Template Engine (PETE) [43]. In a few words, as the engine parses each

expression in the input kernel, it generates its OpenCL string equivalent. On top

of this process, a class in HPL gathers the equivalent strings of the expressions into

a working OpenCL kernel. Our just-in-time optimizer modifies this behavior, using

PETE to load the input HPL kernel into an abstract syntax tree (AST). This tree

is implemented following a typical composition design pattern [39]. Each node class

from the AST hierarchy implements a method that recursively asks its children to

emit their OpenCL equivalents. When a node receives the strings from its children,

it composes its own string and returns it up in the tree. Thus, invoking this method

for the root node eventually generates a full OpenCL kernel.

With this modification, HPL kernels are loaded into an AST before their trans-

lation to OpenCL code, which gives room to implement parametrized optimizations

as transformations on the tree. The optimizer includes transformations to tile and

unroll compute loops, to cache some structures in local memory, to adjust the work

granularity and to exploit the private memory of the devices. These transformations

are driven by both the global and local workspace configurations, the dimensions

of the blocks of iterations assigned to each work-item, tile widths, and unroll fac-

tors. These optimizations have been selected considering well-known basic strategies
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recommended for improving codes for heterogeneous devices. The values for the op-

timization parameters are set by means of heuristics based on general optimization

strategies for heterogeneous devices. Additional data about the naive kernel, such

as the problem sizes, or the lengths of the loops inside the compute section, are also

needed to optimize the code.

To get their kernels processed by the just-in-time optimizer, HPL programmers

have to write them naively, just encoding the calculation of one point of the solution

and with no optimization features. They also have to enclose the code that computes

that single point inside a compute section, leaving variable declarations and other

parts of the kernel outside of it. The optimizer takes advantage of this hint, which

allows to simplify the process. Before the optimization process starts, the AST

has to be populated with information about the access patterns that appear in the

code. Also, notice that the optimizations implemented are inter-dependent, and

because of that, they are applied in an experimentally fixed order. Moreover, both

the way the optimization process is implemented as well as the replacement of time-

consuming search algorithms with heuristics to select the optimizations parameters,

make this optimizer very lightweight so that its execution does not overshadow the

performance improvements achieved by the tuned kernels it generates.

Just as in the case of the two former tools, this optimizer keeps the source-to-

source approach by expecting HPL naive kernels and generating OpenCL optimized

versions. The optimizations are applied by means of transformations performed on

the kernel AST that are driven by multiple parameters, so that the parametrized

optimizations approach is followed too. Regarding the strategy to choose values

for those parameters, the usage of heuristics removes all the drawbacks associated

to time-consuming search algorithms. Finally, users are asked to write naive single-

point kernels, which is consistent with a proven high-level approach for programming

heterogeneous devices like HPL. In summary, this proposal is built following a com-

bination of approaches that provides performance portability, and thus embedding

it in the HPL workflow turns this tool into a performance-portable framework.
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OCLoptimizer

At the outset of the heterogeneous computing, it was quite common that along

with each different new device or architecture, manufacturers released also specific

programming frameworks for them. For instance, the Cell multicore processor was

launched along with its own set of C/C++ language extensions [48]. In a similar

vein, the different vendors of GPUs launched their own solutions, such as CUDA [81]

from NVIDIA or Close To Metal [87] from ATI. Some initial efforts were made too in

order to enable functional portability for different devices. Thus, the BrookGPU [12]

compiler for the Brook programming language intended to provide a unified GPGPU

programming framework based on the OpenGL, DirectX and Close To Metal inter-

faces.

However, the first initiative that really offered a unified solution to that issue was

the OpenCL standard [55]. The design of this framework provides functional porta-

bility, i.e., it allows programmers to write a single code once and run it on multiple

kinds of devices. Moreover, OpenCL was launched by The Khronos Group, an in-

dustrial consortium gathering multiple hardware and software manufacturers. Such

an industrial endorsement and the aforementioned code portability made OpenCL

one of the most flexible options to program heterogeneous devices. Nevertheless,

research on this field continued to evolve, and nowadays it is directed to build

higher-level frameworks or, at least, to widen the scope of some popular solutions

already available. For instance, AMD is working on the Radeon Open Computing

Platform (ROCm) [5]. This platform gathers, among other components, the Het-

29
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erogeneous Compute Compiler (HCC), which is a single source C++ compiler for

both CPUs and GPUs, and the Heterogeneous-Compute Interface for Portability

(HIP), a high-level programming framework that will enable the development of

virtually GPU-universal applications by using either the aforementioned HCC or

the NVIDIA CUDA compiler as back-ends. Despite this trend, the flexibility of

OpenCL still makes it an interesting mechanism to program heterogeneous systems,

to the extent of, for example, being considered a feasible candidate to supersede the

typical programming approaches for FPGAs.

Unfortunately, OpenCL applications that perform adequately on a given device

often require major changes even just to perform reasonably well in others [58, 60,

99]. As a result, codes that are functionally portable by design must be hand-tuned

by their programmers for different target devices. In other words, the OpenCL

standard enables performance portability on its top, but such a feature is not ac-

complished automatically.

This chapter presents OCLoptimizer, the first solution developed in this thesis

to achieve performance portability. This proposal is a source-to-source iterative op-

timization tool. Its inputs are an annotated OpenCL kernel, and a configuration

file that will guide the optimization process. OCLoptimizer uses this information

to generate an optimized version of the input kernel for a selected device, as well

as a fully working host code for it. This host code comes with a default data ini-

tialization routine which can be overridden by the user in order to adapt the code

for her needs. The tool intends to release the programmer from two difficult and

error-prone tasks: (1) hand-optimizing the kernel for a given device, and (2) writing

its associated host code. The annotations introduced in the kernel take the form of

compiler directives used to specify parametrized code transformations. Internally,

when an specific device is targeted, OCLoptimizer follows an iterative search process

that searches an optimized combination of transformations and values for their asso-

ciated parameters. Another interesting feature of OCLoptimizer is that it supports

the optimization of OpenCL codes composed of several kernels, both independent

and inter-dependent. In this latter case, dependencies among kernels are properly

taken into account.

The rest of this chapter is organized as follows. Sections 2.1 and 2.2 present

the OpenCL standard and the Clang front-end for the LLVM compiler framework,
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respectively, which are the two technologies OCLoptimizer is built on. Section 2.3

describes the OCLoptimizer tool, including both its inputs and its workflow. Sec-

tion 2.4 describes how the tool also supports OpenCL codes composed of multiple

kernels. Section 2.5 presents the experimental results. Then, in Section 2.6 we ex-

pose our conclusions about the development of this tool, followed by a discussion on

related work in Section 2.7.

2.1. The OpenCL standard

The Open Computing Language (OpenCL [55]) is an standard that defines a

framework for programming heterogeneous systems. It was created by The Khronos

Group, an industrial consortium devoted to the creation of free open standards for,

among other fields, parallel computing on multiple platforms and devices. Thus,

OpenCL was the first industry standard directly addressing the heterogeneous com-

puting challenges when its first version, OpenCL 1.0, was released in December

2008. The standard kept evolving since then, and nowadays the community works

on a definitive release of the OpenCL 2.2 specification, which was initially published

in March 2016.

OpenCL allows users to exploit the capabilities of multiple devices present in

quite different (i.e., heterogeneous) systems, from GPUs included in smartphones

and desktop CPUs to many-core accelerators included in the nodes of many modern

supercomputers. The main advantage of OpenCL is its functional portability, so that

a single OpenCL program can be run in such a wide range of devices. This is possible

thanks to its two-layered design. On the one hand, the standard defines a software

layer controlled by the programmers, and on the other hand, manufacturers are in

charge of the hardware layer. Manufacturers are responsible of implementing the

standard properly, although they can provide additional device- or vendor-specific

features. All the hardware implementation details, such as drivers and runtime, are

transparent for programmers.

The OpenCL specification is defined in four parts called models: the platform

model, the execution model, the memory model and the programming model. The

rest of this section is devoted to describe the main properties of these models.
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2.1.1. The Platform Model

The OpenCL platform model defines a high-level abstraction that gathers one

or more OpenCL-compatible devices. Figure 2.1 shows the main components of this

model, and how they are related to each other. First, there is a host, which is a

computer with a CPU. This host controls the interaction of the whole platform with

the external environment, being in charge of operations such the I/O management.

One or more OpenCL-supporting devices can be connected to the host. Each de-

vice consists of one or more compute units, which are further divided into one or

several processing elements. Such elements are characterized by executing SIMD

(Single Instruction, Multiple Data) instructions, so that only one instruction is run

simultaneously in several processing elements.

2.1.2. The Execution Model

The OpenCL execution model defines the parts that compose any OpenCL appli-

cation: the host program, and one or several kernels. Kernels are functions written

in a C99-based language provided by OpenCL called OpenCL C. These functions

are run in parallel by the processing elements of a device in order to, in a few words,

process some input memory objects to generate their corresponding outputs. The

host program is the main program of the application. As it can be inferred from its

name, it runs on the host CPU and it is in charge of tasks such as defining contexts

for the OpenCL devices and commanding those devices to execute kernels.

Host

OpenCL device

Compute unit

Processing element

Figure 2.1: OpenCL platform model
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Kernels

When the host submits a kernel for execution on an OpenCL device, the runtime

defines an n-dimensional integer workspace. This workspace can have up to three

dimensions. An instance of the submitted kernel, called work-item, is created for

each point in this space. Each work-item can be identified by its coordinates in the

workspace, such coordinates being known as the global ID. These work-items can be

organized to form work-groups, each group having its own local index space. Thus,

for each work-item in a group there is also a local ID referring to its coordinates in the

local index space. Work-groups provide a coarser decomposition of the workspace,

and they can be also identified as a whole with a work-group ID. Moreover, work-

items gathered in a same work-group share several noteworthy properties. First,

the execution of the work-items gathered in a same group can not be split among

different compute units. Second, the work-items in a group share some processor

resources on the device, namely a local on-chip memory. This memory allows the

work-items to access common data very fast. Finally, only the work-items sharing

a work-group can be synchronized. Namely, programmers can set barriers in their

kernels to force that synchronization.

Figure 2.2 depicts an example of a two-dimensional global workspace composed of

16×16 work-items. This space is divided in 16 work-groups of 4×4 work-items. The

group containing the highlighted work-item has a work-group ID (wx, wy) = (3, 2),

and inside that group, that work-item has a local ID (lx, ly) = (1, 2). Regarding the

global workspace, it can be also identified by the global ID (gx, gy) = (13, 10). Let

us notice that the identifiers of the example does not follow the (y, x) order expected

for a matrix representation, but the inverse (x, y) form, as the OpenCL standard

specification follows this latter one.

Host Program

The host program is in charge of tasks that are fundamental to run any OpenCL

kernel. It establishes the environment within which the kernels are defined and

executed. This environment is called context, and it is created and manipulated by

means of some functions of the OpenCL API. The contexts are defined in terms of

these resources:
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(0,1) (1,1)

(1,2)

(1,3)

(1,0)

(2,1) (3,1)

x

y

Figure 2.2: OpenCL workspace example

Devices: A collection of OpenCL devices on which the host can launch the

execution of a kernel.

Kernels: Functions written in the C-based OpenCL programming language

and which will be run on devices.

Program objects: Source code and binaries implementing a kernel or a

collection of them.

Memory objects: A collection of memory buffers that can be operated either

by the host program, or the devices by means of the kernels, or both.

Command queues: Objects through which the interaction of the host and

the devices occur. They are in charge of submitting commands to devices.

Once a context is created, the user can create command queues to control the

execution of kernels on the OpenCL devices registered in that context. These queues

accept three different kinds of commands:

Kernel execution commands, which request the execution of a kernel on a

device.

Memory commands, which are responsible of data transfers between the

memory visible by the host program and the memory of the devices.
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Synchronization commands, which allow users to manipulate the order in

which any other commands are executed.

These commands can also affect the execution of the host program depending

on whether they are enqueued as blocking or non-blocking commands. In the first

case, the execution of the host program will be blocked until the completion of the

command. Otherwise, the host program simply continues its execution just after

the command is enqueued.

2.1.3. The Memory Model

The memory model of OpenCL covers issues like how the data objects manipu-

lated by both the host program and the kernels are defined, the scope up to which

these objects are visible, or the rules to use them safely. All these interactions,

which are summarized in the scheme of Figure 2.3, pivot around an scheme of five

distinct memory regions: Host, Global, Constant, Local and Private memory. These

regions are described now in turn.

Host Memory

A relevant stake of OpenCL devices are accelerators that usually operate memory

systems separated from that of the host CPU. Moreover, OpenCL concurrency relies

on a relaxed consistency model based on events that notify about the completion of

the enqueued commands and on barrier synchronizations performed in the kernels.

In order to support these features, the memory objects manipulated by an OpenCL

host program have to be defined in a separated space from the host CPU main

memory.

Global Memory

Any work-item can read and write random memory positions in this region,

which is the main memory space of the device and can span up to several GB. It

also works as a gateway through which the devices can send to or receive data from
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Local memoryLocal memory

Private
memory

Private
memory

Work-itemWork-item

Local memory

OpenCL device

Private
memory

Private
memory

Work-itemWork-item

Local memory

Work-groupWork-group

Global/Constant memory

Host memory

Host program

Figure 2.3: OpenCL memory model

the host program. In modern accelerators and processors, this memory space may

be a memory hierarchy with several levels of cache. Such a memory layout intends to

mitigate the time penalties that might arise when a kernel performs global memory

accesses lacking of either locality, or coalescence, or both. The term coalescence

is related to the ability of many devices to pack several memory accesses into a

reduced number of memory transactions. In order to be coalesced, global memory

accesses must follow a pattern meeting two essential conditions: consecutive work-

items must access consecutive positions in global memory, and the region they are

accessing must be properly aligned. Let us add that work-items follow a row-major

order in both global and local workspaces, and that a memory region is aligned when

its size is a multiple of the data type size.

Constant Memory

As its name implies, this memory is constant for the kernels, all the changes on

it being performed by the host application. It is very useful to store small sets of

constant values whose allocation in the global memory could hamper the exploitation

of cache hierarchies or hide potential coalesced accesses.
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Local Memory

Only the work-items packed into the same work-group can interact with this

region, which is usually implemented as a very fast on-chip memory. All the work-

items in a group share the same view of this memory space, so it is usually exploited

as a scratchpad memory. Coherency issues arising because of the concurrent modi-

fication of this memory by the work-items that share it can be solved by means of

the aforementioned work-group level synchronization barriers.

Private Memory

In general, data is stored in private memory when it is not stored in any of the

other memory regions. In principle, this data would be placed in processor registers.

However, both space and capabilities of this kind of storage are limited, which can

give place to a register spilling problem. When registers are overused, or an array

is declared as private and the device is not able to dynamically index its registers,

private data will be pushed to global memory. This situation may cause important

performance penalties.

2.1.4. Programming models supported

OpenCL was designed having in mind both data- and task-parallel program-

ming models. Data-parallel algorithms are usually defined in terms of concurrent

computations that perform the same operation(s) on each element of a set of data

structures. Such problems naturally fit the execution model of OpenCL, since users

can define workspaces matching the layout of their data structures, and then create

work-items so that each one of them runs an instance of the kernel on an element,

or group of elements, of these structures. Although data parallelism is the main tar-

get of the OpenCL execution model, task-parallel algorithms can be also supported.

Thus, users can define kernels that execute a single work-item but extract parallelism

by other means, such as vector operations. A kernel defined in such terms can be en-

queued to run on a device as a task. Also tasks representing different computations

can be executed in parallel in an OpenCL application. This way, task parallelism

can be extracted by combining and synchronizing the execution of multiple kernels.
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A data-parallel example: vector addition

The code shown in Listing 2.1 defines a vector addition kernel in OpenCL and

implements a host program to run it in a GPU available in the system. The kernel

of this example gets two float vectors as inputs, a and b, and computes a + b to

generate another float vector c as an output. Some omissions and simplifications

are done for the sake of clarity, such as not including error checks or assuming that

there is a single platform and that it provides access only to a GPU.

Actually, the vector addition kernel implementation corresponds only to the

string defined in lines 6-10. This kernel is a function that uses two input vectors a

and b defined in global memory, and another vector c, also defined in global memory,

which will hold the result. Notice that each argument, expressed by a pointer to the

beginning of the vector, is modified with the keyword global in order to specify

the memory region to which the associated data structure belongs. The code of this

kernel specifies that each work-item performs the addition of a single element of the

array a and another one in the same position of array b, and then stores the result in

the associated position of the array c. Function get global id(int dim) returns

the index of a work-item in the global workspace in the dimension dim. Since this

problem has a single dimension, and dimensions begin to count from 0, here dim=0.

The main() function implements the host program. The first step in that func-

tion, performed in line 15, consists in choosing a platform from those found in the

system. Once a platform is selected, we can inspect it and pick a device to run

our kernels. This is done in line 17. Namely, we are getting the identifier of the

first GPU available in the platform. In line 18, the selected device is included in a

context, which is used in the next line to define a command queue. As a result of

these operations, the minimum environment needed to run our kernel is ready.

The kernel source code, contained in the string defined in lines 6-10, must be

transformed into an executable binary. This is done by the functions called in line

21, which creates a program object from the string, and in line 22, which compiles

the program for the chosen device. In line 23, a kernel object, which will be used for

associating arguments to the kernel and later requesting its execution, is obtained

from the program. In this example, for simplicity reasons, the kernel function is

hard-coded into the aforementioned string declared in the host code. However, it
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1 #include <CL/cl.h>

2 #include <stdio.h>

3
4 #define VECLEN 1024

5
6 const char = *kernel_code =

7 "__kernel void addvec(__global float *a,__global float *b,__global float *c) { \n \

8 int i = get_global_size (0); \n \

9 c[i] = a[i] + b[i]; \n \

10 }";

11
12 int main(int argc , char** argv)

13 {

14 cl_platform_id platform;

15 clGetPlatformIDs (1,&platform ,NULL);

16 cl_device_id device;

17 clGetDeviceIDs(platform ,CL_DEVICE_TYPE_GPU ,1,&device , NULL);

18 cl_context context = clCreateContext(NULL ,1,&device ,0,NULL);

19 cl_command_queue queue = clCreateCommandQueue(context ,device ,0,NULL);

20
21 cl_program program = clCreateProgramWithSource(context ,1,& kernel_code ,NULL ,NULL);

22 clBuildProgram(program ,1,&device ,NULL ,NULL ,NULL);

23 cl_kernel kernel = clCreateKernel(program ," vecadd",NULL);

24
25 int size = VECLEN * sizeof(int);

26 cl_mem a_buffer = clCreateBuffer(context ,CL_MEM_READ_ONLY ,size ,NULL ,NULL);

27 cl_mem b_buffer = clCreateBuffer(context ,CL_MEM_READ_ONLY ,size ,NULL ,NULL);

28 cl_mem c_buffer = clCreateBuffer(context ,CL_MEM_WRITE_ONLY ,size ,NULL ,NULL);

29
30 int *a_host = (int*) malloc(size);

31 int *b_host = (int*) malloc(size);

32 int *c_host = (int*) malloc(size);

33
34 { ... } // a_host and b_host initializations

35
36 clEnqueueWriteBuffer(queue ,a_buffer ,CL_TRUE ,0,size ,a_host ,0,NULL ,NULL);

37 clEnqueueWriteBuffer(queue ,b_buffer ,CL_TRUE ,0,size ,b_host ,0,NULL ,NULL);

38
39 size_t global_work_size = VECLEN;

40 clSetKernelArg(kernel ,0,sizeof(cl_mem),&a_buffer );

41 clSetKernelArg(kernel ,1,sizeof(cl_mem),&b_buffer );

42 clSetKernelArg(kernel ,2,sizeof(cl_mem),&c_buffer );

43 clEnqueueNDRangeKernel(queue ,kernel ,1,NULL ,& global_work_size ,NULL ,0,NULL ,NULL);

44
45 clEnqueueReadBuffer(queue ,c_buffer ,CL_TRUE ,size ,c_host ,0,NULL ,NULL);

46
47 { ... } // c_host usage

48
49 return 0;

50 }

Listing 2.1: OpenCL example: vector addition

can be also read from a separate text file. This latter approach is common in real

applications, which are composed of several kernels and/or kernels more complex

than the one in this simple example.
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As commented in Section 2.1.3, the host program manipulates memory objects

that are defined in the memory space of the device, which is typically separate from

the host CPU. Lines 26-28 define the memory buffers required for the execution

of our kernel. The function for buffer creation includes parameters such as the

context the buffer belongs to, or its access type in the kernel. The most common

access types are read-only, write-only and read-write, respectively identified by the

constants CL MEM READ ONLY, CL MEM WRITE ONLY, and CL MEM READ WRITE.

In lines 36-37 the content of these buffers is initialized in the device memory by

copying the input values that originally reside in the host memory. This is achieved

by means of the clEnqueueWriteBuffer function. In line 36, this command is

enqueued in the queue passed as argument to copy the data pointed by the host

memory pointer a host in the device buffer a buffer. In line 37, the copy of data

pointed by b host to the buffer b buffer is enqueued.

The execution parameters of the kernel are set in lines 39-43. First, the size of

a unidimensional workspace with VECLEN work-items is defined in line 39. Then,

lines 40-42 specify the arguments passed to the kernel, this is, the input buffers

a buffer and a buffer, and the ouput buffer c buffer. Finally, in line 43, a

command to execute the program stored on the kernel object is enqueued. This is

done by calling the clEnqueueNDRangeKernel function, whose arguments specify,

among other relevant parameters, the queue which will run the kernel and the global

workspace definition. In this case there is no local workspace defined (the value for

the sixth argument is NULL). In such a case, the OpenCL runtime is left in charge

of choosing a local domain suitable for the properties of the target device.

Commands to launch kernels are non-blocking operations. Because of that,

beyond this point the kernel runs in the GPU while the rest of the execution of

host code continues on the host CPU. Any further code using the result stored in

c buffer (represented in the example with an elision in line 47) would need to re-

trieve it from the device first. This transfer of the data of c buffer to the host mem-

ory structure pointed by c host is done by calling the function clEnqueueReadBuffer

in line 45, which enqueues a command to read this data back. The synchronization

behavior of commands like clEnqueueReadBuffer and clEnqueueWriteBuffer can

be specified by means of a block setting flag passed in their respective third ar-

guments. Thus, when this flag is CL TRUE, the host application will wait for the
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completion of the command. Otherwise, the control is returned to the host immedi-

ately after the command is enqueued. In this example, the host will be waiting for

the enqueueReadBuffer command to finish, i.e., it will wait until the data transfer

is completed.

From this example it can be concluded that writing a working host code for a

kernel is a task composed of several well-defined steps: context definition, program

compilation, memory buffers definition, transfer of input buffers to the device, kernel

execution enqueuing, and transfer of the output buffers to the host. As we can see,

all these steps are performed by means of functions offered by the OpenCL host

API, and many of them rely on details that non-experienced users may easily omit

or misunderstand. Thus, one of the aims of the OCLoptimizer tool presented in

this chapter is to help users to get rid of these repetitive and error-prone tasks by

automating the development of the host code.

2.2. LLVM and the CLANG front-end

In this section a brief description of the LLVM compiler infrastructure and of

Clang, its front-end for C/C++ source code, is made. The code analysis and trans-

formation operations performed in OCLoptimizer are implemented on top of this

toolchain. Thus, also a quick introduction about how source-to-source transforma-

tions can be performed using Clang to rewrite source code is given. Finally, some

issues related to the version of the Clang distribution included in OCLoptimizer are

discussed.

2.2.1. The LLVM compiler framework

The Low-Level Virtual Machine (LLVM) is a compiler framework designed to

support transparent program analysis and transformation operations for arbitrary

software [62]. It is based on a lifelong approach that intends to maximize the chances

for optimizing a program along all the phases of its life cycle, from compile- and link-

time to run-time, and even at idle-time between runs. LLVM achieves that objective

through two components. First, a compiler designed in such a way that it can go back
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and forth along the program timeline as needed to perform any kind of optimization.

Second, an internal code representation (called LLVM internal representation, or

LLVM IR) which is abstract enough to support such lifelong optimizations. This

code representation is built from an abstract RISC-like instruction set enriched

with higher-level information about data types or both data and control flow of

programs. It does not represent high-level language constructs, which makes it

source-language indepedent, and at the same time it is able to capture the key

operations of processors, but without being subject to machine-specific constraints.

The most popular design for a traditional static compiler is a three-phase ap-

proach whose major components are a front-end, an optimizer and a back-end. This

design can be generalized both to support codes written in multiple source languages

and to generate code for multiple target machines. Figure 2.4 shows how the LLVM

compiler framework is designed in such vein [61]. Let us focus on the front-ends

for the different source code languages, which must be provided externally. These

front-ends are responsible for parsing, validating and diagnosing errors in the input

code, and then translating it into the LLVM IR. Usually, these front-ends build

first an abstract syntax tree (AST), on which they can perform some compile-time

language-specific optimizations. Next, the tree is converted to LLVM representa-

tion. By means of different front-ends, LLVM supports compiling Ada, C/C++, D,

Delphi, Fortran, Haskell, Objective-C and Swift, among other languages. Some of

them were derived from those implemented in the GCC Compiler Collection (GCC).

Others, in turn, are original developments, such as the Clang front-end for C/C++

and some extensions of those languages.
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Fortran
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front-end

...
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x86
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CUDA
back-end
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back-end

...
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x86 assembler

CUDA PTX code
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Figure 2.4: LLVM compiler framework general design
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2.2.2. The Clang front-end

Clang was born as an LLVM front-end for the C, C++ and Objective-C/C++

programming languages. It has also been enriched with support for some C-based

parallel programming frameworks, namely OpenMP, OpenCL and CUDA. Clang

also includes a code static analyzer, and some programmer tools built on top of it.

The Clang design was thought by a team of Apple developers that needed a compiler

front-end more tailored to their software projects than GCC. In particular, Clang is

designed to collect more information at compile-time and also to keep the form of

the original code as long as possible along all its life cycle.

The front-end capabilities of Clang rely on a basic module that implements

common functionalities such as source file management or error diagnostics. This

module is complemented with another one that provides support for all the LLVM-

related features. On top of both, the typical sequential workflow of a compiler front-

end is built. Thus, in a first stage, a lexical analysis of the string of code is performed.

Then, the identified tokens are syntactically analyzed by a parser and, finally, an

abstract syntax tree (AST) representing the code is generated. The code is loaded

into the tree in terms of both variables and types declarations, multiple kinds of types

(built-in, functions, arrays, pointers), and statements, which are further divided

into the usual code constructs representing alternative and repetitive programming

structures, and expressions such as literals, function calls, array references, or n-ary

operators. Figure 2.5 depicts this high-level description of the architecture of Clang.
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LLVM IR
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Figure 2.5: Clang high-level architecture and workflow
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Source-to-source transformations

Both the main design goals and the high-level architecture described make Clang

particularly suitable to support code refactoring tasks following a source-to-source

approach. Clang offers multiple options to perform such tasks, all of them starting

by providing an input code file, as the steps a1 and b1 of the workflow of Figure 2.5

shows.

One possibility is to use Clang as a black box and directly transform the C code

into its LLVM IR equivalent, make some transformations on top of that representa-

tion, retrace our steps to obtain a new AST from the modified LLVM IR, and finally

rewrite that tree into a transformed version of the C code. This way of operation

is represented by steps a2 and a3 in the workflow of Figure 2.5. Let us remind

that the LLVM IR abstraction is partially achieved by not storing source-language

constructs, so that the resulting C code is not likely to resemble the original input

and, hence, it might be hardly understood by its programmer. Another possibility

is to exploit the front-end internals and, as the step b2 of Figure 2.5 shows, use the

functionalities provided by the AST module to perform some transformations on the

code. As long as it has not been processed outside Clang, this tree will keep all the

source-language-related information, and thanks to this, the rewritten source code

will resemble the original input.

OCLoptimizer was intended as a source-to-source optimization tool for OpenCL

kernels. Therefore, a mechanism able to take an input code, load it into a manipu-

lable intermediate form, and transform somehow such representation to eventually

produce a human-readable optimized version seems to be a valid solution to im-

plement it. The first two stages of such optimization process could be performed

equally by any of the two source-to-source transformation approaches described.

However, we are specially interested in producing code as much human-readable as

possible, which makes the second approach the most suitable for that purpose.

Once the code is loaded into its tree-like representation, the AST module of

Clang offers different possibilities to transform it. One can choose to transform the

tree directly by replacing the subtree enclosing an objective code section with its

optimized counterpart. This solution requires a thorough knowledge of the Clang

AST class hierarchy, since errors on the composition of the transformed tree could
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lead to incorrect or even non-working kernels. Another option consists in keeping

the tree unaltered and postponing the code optimization transformations until the

final rewriting step. By keeping the AST, we can still identify the subtrees that rep-

resent the code sections to optimize, and then we can extend the default rewriting

procedure of Clang to capture such cases and produce our own optimized versions

of the original code sections. This implies a direct manipulation of code strings in

order to generate optimized versions, which can be also quite error-prone. How-

ever, OpenCL programming knowledge is enough to implement it. So, this latter

alternative was the chosen one.

Rewriting code with Clang

The AST module of Clang provides the class ASTConsumer, which implements a

basic processor for any tree generated from an input code. Any user-written class

intended to manipulate an AST must extend ASTConsumer, since it gives access

to the method that launches the recursive traversal of the tree. Once the mech-

anisms to access and traverse a tree are set, the next step consists in extending

the default behavior of the consumer when it visits the nodes during the traversal

of the AST. Clang also provides the Visitor helper classes, which have special-

ized implementations to visit different kinds of nodes. The user-written consumer

can extend some of these classes and override their Visit methods, which will be

invoked when the corresponding nodes are visited. Thus, by overriding these meth-

ods it is possible to enrich the tree traversal with operations that manipulate the

nodes. In this case, we are interested in rewriting the code. To do that, such over-

ridden versions of the Visit methods must obtain the string equivalents by calling

the ConvertToString() method of the corresponding node. These strings are just

copies, so that any modification on them will not give place to side effects anywhere

else, the original AST remaining untouched. The effective rewriting operation has

to be performed through the class Rewriter. This class provides a ReplaceText()

method, which registers a new equivalent for a given node. Once all the tree has been

traversed and the refined visitors have obtained and registered their new strings, the

transformed version of the input code can be generated. When this final version is

ready, it is stored in a RewriteBuffer, from which the string containing the whole

code can be written to a file.
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Version-related issues

The preceding explanations about the source-to-source transformation options

and the code rewriting procedures are based on LLVM 3.0 and Clang 3.0, which were

the releases available when the development of the first iteration of OCLoptimizer

started. Let us notice that both the LLVM compiler framework and the Clang front-

end are very successful and dynamic open-source community-driven projects. As a

result, their capabilities and the structure of the internal classes implementing them

are continuously evolving, and thus, such explanations and, specially, the references

to particular classes or methods, are likely to be outdated. Nevertheless, we consider

them useful to illustrate how the source-to-source transformations performed by

OCLoptimizer are implemented.

Furthermore, although the support for OpenCL kernels provided by Clang 3.0

seemed enough to start, it was not full yet. Thus, some limitations arose when pars-

ing the OCLoptimizer annotations and occurrences of the OpenCL vector types. These

limitations were averted by means of workarounds which are introduced along the

description of the tool workflow. During the developent of OCLoptimizer, several

new versions of Clang with full support for OpenCL were released. However, those

versions also included major changes on both the class hierarchy and the program-

ming interface. Due to this, and since our workarounds allowed to effectively parse

the OpenCL kernels, we kept them rather than rebuilding the whole tool to adapt

it to the new internal structure of Clang.

2.3. The OCLoptimizer tool

OCLoptimizer is a source-to-source iterative optimization tool for OpenCL. As

Figure 2.6 depicts, this tool performs three main steps based on an annotated source

code of a kernel and a configuration file, both required as inputs. First, it generates

a suitable host code for the kernel. Then, it performs two searches driven by the

execution time in order to optimize the OpenCL code for the platform where the

tool is executed. The first search constitutes the second step of the tool. Its aim

is to select an optimized combination of the index spaces of the kernel, both the

global one, which determines the number of work-items or threads that run it in
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parallel, and the local one, which controls the number of threads per work-group.

The combination of these two index spaces, which have between one and three

dimensions, will be called in what follows the workspace of the kernel. Finally, in

the third step, OCLoptimizer runs an iterative compilation process driven by the

annotations of the user in the source code, generating an optimized version of the

kernel as result.

The host generation stage only requires the specifications in the configuration

file, described in Section 2.3.3. The generated host code is a stand-alone program

with all the stages required to run an OpenCL kernel, which were illustrated and

briefly described in Section 2.1.4. The initialization of the kernel inputs whose value

is not specified in the configuration file may be random or performed by means of a

code provided by the user. The host code receives as arguments the parameters that

define the workspace configuration of the kernel, namely, the global and the local

sizes for each dimension of the workspace. This facilitates the search of an optimized

workspace configuration, as it eliminates the need to recompile the host code. We

now explain in detail the two search processes performed by the tool.
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1 __kernel void addvec(const unsigned int n, __global float *a,

2 __global float *b, __global float *c)

3 {

4 int i = get_global_size (0);

5 c[i] = a[i] + b[i];

6 }

Listing 2.2: OCLoptimizer vector addition example: base kernel

The vector addition code (C = A+B) shown in Listing 2.2 is used as a running

example through this chapter. Line 4 of shows that this is a naive kernel linked to

an element-wise work distribution, where each instance of the kernel calculates one

position of the solution. The input configuration file for this kernel is used also in

Section 2.3.3 to describe the main components of such files. Let us advance that this

file indicates that the sizes of the arrays are 1024, the code must be optimized for a

GPU, the input arrays must be initialized randomly, the local and global workspaces

have one dimension, and the kernel receives four parameters: a scalar n, which takes

the value of the arrays size, and the three arrays involved in the computation, A, B

and C.

The inputs of the kernel are initialized at the beginning of the generated host

code. This is followed by all the steps of a usual OpenCL host code required to locate

the device where the computation will be done: platforms discovery, context creation

and devices discovery. Once a device of the type specified in the configuration file

is selected, the kernel is loaded and compiled. Then, the array inputs specified in

the configuration file are transferred to the device through a command queue. The

generated host code and the kernel are written for a generic workspace configuration

which is passed as a parameter to the host code. This workspace configuration is

used to enqueue the kernel. Finally, the host code enqueues the commands to read

the results generated by the kernel.

2.3.1. Workspace optimization

The configuration file indicates the number of dimensions of the kernel workspace

as well as the minimum and the maximum values that the tool has to explore for

each dimension of the global and the local index spaces. OCLoptimizer looks for
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an optimized combination of sizes in each dimension of both index spaces within

these limits by means of a search process. This process is guided by the execution

time of each combination in the target device specified in the configuration file. For

this, the parameterized host code generated by the tool must be run using each

workspace configuration to test. It must be noticed that at this stage of OCLop-

timizer, the host code can only launch the base kernel provided by the user, since

the kernel optimization process is performed in a further stage of the tool work-

flow. However, the loops in the kernel must adjust their iteration space in order to

match each different workspace that can be requested during the search. Thus, for

the vector addition example, the base kernel cannot we written as shown in List-

ing 2.2, as such code lacks this adaption capability. Rather, it has to be rewritten

in a way that supports a generic workspace configuration. This is achieved using a

set of three macros that OCLoptimizer provides with this purpose. These macros,

called GENINIT, GENLIMIT, and GENSTEP, adapt the initialization, limit, and step of

a loop, respectively, and are declared in a header file that is automatically included

in the kernel by the tool. The programmer can use these macros in the loop(s)

selected to distribute their iterations among the work-items of the workspace, as in

multidimensional workspaces, a given dimension of the workspace is associated to a

different loop. The three macros receive three parameters: (1) <n>, the number of

iterations of the original loop, (2) <s>, an indication about whether the iterations

are distributed among a number of points of the global (g) or the local (l) index

space, and (3) <d>, the workspace dimension associated to this loop (0, 1 or 2).

Listing 2.3 shows the syntax that a user must follow to include these macros

in the vector addition kernel of our running example, although letting the macro

arguments as generic values to be filled in. The kernel has been extended with a

single loop because the vector addition problem as a single dimension, and thus

one loop is enough to manage it. As we can see, the GENSTEP macro calculates an

1 __kernel void addvec(const unsigned int n, __global float *a,

2 __global float *b, __global float *c)

3 {

4 int i;

5 for(i=GENINIT(<n>,<s>,<d>);i<GENLIMIT(<n>,<s>,<d>);i=i+GENSTEP(<n>,<s>,<d>))

6 c[i] = a[i] + b[i];

7 }

Listing 2.3: OCLoptimizer vector addition example: generic base kernel
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adequate step for the loop whereas the GENINIT and GENLIMIT macros calculate

the lower and the upper bound of the loop, respectively. These three macros are

intended to generate a well-fitting distribution for the target platform. For example,

in CPUs or accelerators such as the Xeon Phi, the macros give place to a consecutive

distribution, which is expected to favor cache locality and auto-vectorization. In

turn, when a GPU is detected, the macros give place to a cyclic distribution of the

iterations among the threads. This way, the access pattern followed by the references

generates coalesced accesses, which are expected to improve the performance in this

kind of platforms. In both cases, if the input kernel is programmed in a naive way in

the style of our vector addition example, the work-items are going to access global

memory positions through their global identifiers. Due to this, the value for the <s>

parameter of the macros should be g. However, OCLoptimizer is also able to process

kernels that are already optimized to some extent, but which are still improvable by

means of other optimizations offered by the tool. For instance, if a kernel exploits

the local memory and, thus, the work-items iterate in some loop on local memory

positions through their local identifiers, then the value for the <s> parameter for

that loop should be l.

Once the described adaptation is performed, the user must choose between two

search strategies for this first optimization process. Such strategies are an exhaustive

search (ES) and a genetic algorithm (GA) [42], which are discussed in turn.

Exhaustive search

A search algorithm is defined as exhaustive when it explores the whole solution

space of a problem. While such behavior is its main advantage, it also introduces

some major drawbacks. Since an exhaustive algorithm visits the whole search space,

it will eventually find the optimal solution inside it. However, depending on the

problem, the cardinality of such space can be so high that the search process might

take a long time to finish. Moreover, usually there are solutions that are known

beforehand to be clearly suboptimal.

Figure 2.7 summarizes the steps followed by the exhaustive search of an op-

timized workspace configuration. First, the tool generates the set of workspace

configurations included in the ranges specified in the configuration file. In order to
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reduce the number of combinations, the points considered for each dimension i of a

given index space are mi, 2mi, 4mi, 8mi, . . .Mi, where mi and Mi are the minimum

and the maximum values specified for dimension i of that index space in the con-

figuration file, respectively. The execution model of OpenCL introduces constraints

that, for example, force the local workspace to be a divisor of the global one in every

dimension. Also, some OpenCL implementations limit the size of each dimension of

a work-group, and also set a maximum value for the number of work-items grouped

in it. OpenCL runtimes keep information about the capabilities and restrictions of

the devices they support, and they make them available to programmers by means of

their API. Namely, the values involved in the restrictions just mentioned can be ob-

tained by calling the clGetDeviceInfo() method of the OpenCL API and reading

the fields CL DEVICE MAX WORK GROUP SIZE and CL DEVICE MAX WORK ITEM SIZES,

respectively. These restrictions make some configurations impossible and hence they

are discarded in advance. No matter they are deliberate or imposed, these filters

are useful to reduce the size of the set of workspace configurations to explore before

launching the search process. Once these filters have been applied, all the surviving

configurations have to be evaluated. Let us remind that a workspace-parametrized

host code is generated on the first stage of the workflow, so it can be used at this

point to run each workspace configuration and get its execution time. Many of these

configurations are quite suboptimal, and the full execution of all of them may make

too long. To mitigate this issue, the tool keeps the minimum execution time mea-

sured for a single configuration along the search process, and kills every test that

lasts more than such a limit. Notice that, eventually, the configuration linked to

such minimum time will be the optimal one.
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Genetic algorithm search

Genetic algorithms are a particular case of a more general kind of search meth-

ods called evolutionary algorithms, which are inspired, as such name suggests, by

biological evolution phenomena. Thus, in genetic algorithms the search space of a

problem is modeled as a population of individuals. Each individual is identified with

a chromosome, such chromosomes being composed of multiple genes. Each gene rep-

resents some feature of the individual, which can take values called alleles within a

range. In the same vein as in nature, where only the fittest survive, the aim of these

algorithms is to maximize a function called fitness function. This function, as it can

be inferred from its name, measures the quality of the individuals in a population.

As an evolutionary search method, another defining characteristic of genetic al-

gorithms is that their populations must evolve along time, which leads to the concept

of generation. The number of individuals in the generations is usually determined by

experimentation. Thus, the algorithm implements reproduction mechanisms through

which pairs of individuals are selected to make them breed a new generation. The

selection criteria for such pairs are usually biased to mate quite fit individuals. Each

mating pair undergoes a crossover operation on which their chromosomes are cut in

gene strips by one or several points and, by mixing and pasting back such strips, new

individuals are formed. Moreover, mutations on the genes of these newborn individ-

uals are randomized. Pairs from the current generation will be mated to reproduce

until the newborn offspring fills a new one. However, the population is not expected

to evolve indefinitely. Rather, the algorithm iterates on the creation of new gener-

ations until a termination condition is satisfied. Such condition usually depends on

both a number of the latter generations and the fitness of their individuals.

This kind of algorithms is able to find high-quality solutions for a problem with-

out visiting exhaustively all the search space, this being its main advantage. How-

ever, it is very sensitive to inaccurate configurations of the operation parameters.

On the one hand, there are configurations that can hamper considerably the variety

of individuals. This increases the odds that the algorithm ends prematurely and,

as a consequence, returns a local optimum or even a meaningless solution. On the

other hand, an algorithm implementing a too randomized evolution is very likely to

lurch across the solution space and never reach its termination condition.
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Let us now explain how an optimized workspace configuration can be found by

means of a genetic algorithm. In this problem, each feasible workspace configura-

tion is treated as an individual, and the genes in its chromosome represent each

dimension of both the global and the local workspace sizes. Regarding the quality

of a configuration, the shorter the execution time of a workspace configuration is,

the better. Since the algorithm looks for a maximum, in this case the fitness func-

tion is defined as the inverse of the execution time of the workspace configuration

corresponding to a given individual. As the flowchart in Figure 2.8 shows, the data

input of the algorithm is the initial population. For this search process, the number

of initial individuals was previously determined by experimentation, each individ-

ual being generated by randomizing values for global and local workspaces sizes.

Such values are constrained by the same limitations described for the exhaustive

search algorithm. Sometimes, these restrictions might be so tight that there will be
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 satisfied?

No

Yes Optimized
host
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Figure 2.8: Iterative process to find an optimized workspace configuration using a
genetic algorithm
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fewer feasible individuals than the size set for the initial population. If this happens,

random clones of existing individuals are created until the desired population size

is reached. Once the initial population is generated, the fitness function is evalu-

ated for each individual. Evaluations are performed by passing the corresponding

workspace configuration to the host code generated by the tool, running it three

times using the given configuration, and getting the average execution time. The

termination condition set for this search is that the individual with the maximum

fitness, i.e., the fastest workspace configuration, is the same in three consecutive

generations. This implies that after the evaluation of the first generation, the con-

dition cannot be satisfied yet. Thus, a new generation is bred. As the feedback loop

in the flowchart shows, this new generation will be the input for the next iteration

of the algorithm. This process is repeated until at least three new generations are

created, and then, when along the three latter generations the fastest workspace

configuration found remains the same. When this happens, the algorithm returns

an optimized workspace configuration to be used during the kernel optimization

process.

2.3.2. Optimized kernel code generation

Once both the global and the local workspace configurations have been chosen,

the tool launches an iterative optimization process in which a series of code trans-

formations are applied to the kernel code. These optimizations are suggested by the

user by means of compiler directives inserted in the kernel code. This stage has been

built on top of version 3.0 of the Clang front-end for LLVM [62]. All the code ma-

nipulation tasks are performed on the Abstract Syntax Tree (AST) representation

of the input kernel, rather than on the LLVM intermediate representation (IR). The

reason is that this enables us to generate an output optimized kernel that is much

more human-readable, similar to the input kernel, and easier to maintain than the

one obtained by other approaches such as the usage of the LLVM IR.

In order to optimize it, the input kernel must be annotated with special OCLop-

timizer directives. These annotations precede the piece of code affected by the trans-

formation, the general form of an annotation being

#pragma oclopts <name > <params > [tolerance t] [number n]
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where <name> is the name of the optimization technique to apply and <params>

stands for its parameters, which usually vary among techniques. These parameters

are mostly used to define a range of values to test when the corresponding technique

is applied. The optional field tolerance restricts the versions that proceed to the

next level of the iterative process to those whose execution times are below a tol-

erance t (0 ≤ t ≤ 100) percentage above the time of the fastest one found among

them. Finally, the argument number can be used to limit the number of versions

that proceed to the next iteration of the process.

The current version of OCLoptimizer only applies the unroll and the unroll-and-

jam techniques [2] and it selects an optimized unroll factor for each annotated loop.

The general form of the pragma associated to these techniques is

#pragma oclopts unroll <init > <end > <step > [tolerance t] [number n]

where unroll is the name of the technique and the parameters <init>, <end>, and

<step> are the first, the last and the step values used to build the search space of

unroll factors that the tool has to explore, respectively.

One of the workarounds implemented to avert the limitations found in Clang 3.0

is related to the processing of the optimization directives, which were not properly

parsed. To avert this problem, these annotations are converted in a previous pre-

processing stage to calls to a set of empty functions created for that purpose. These

functions are defined in a header file delivered with the tool and which is auto-

matically included by it in the input kernels. Each type of optimization directive

is mapped to a single function, while the parameters of the annotation are the

arguments of the corresponding function. Thus, when the code consumer imple-

mented with Clang visits any call to such functions, both the optimization type

and the arguments are captured and then applied to the annotated section. The

other workaround intends to avert the lack of compatibility with the OpenCL vector

types, which causes errors when parsing their data types. The solution to this issue

consisted on automatically adding to the input kernel an explicit declaration

typedef <vtype > <type ><n> __attribute__ (( ext_vector_type(<n >)));

on which <vtype> is the vector type to define (e.g., float4), <type> is the corre-

sponding base type (float) and <n> is the vector length (4).



56 Chapter 2. OCLoptimizer

Listing 2.4 shows the annotated version of the base kernel described in Listing 2.2.

We can see that it has the same parameters as in Listing 2.2, and that is has been

modified to be able to adapt to different workspace configurations by adding the

loop already illustrated in Listing 2.3. Notice how the macros GENINIT, GENLIMIT

and GENSTEP are used to distribute the computation of the n positions of the vectors

to process among the work-items available in the dimension 0 of the global (g)

workspace. Moreover, the loop is annotated with an unroll pragma that commands

OCLoptimizer to test the range of unroll factors between 2 and 8 with step 2, i.e.,

the search space to explore is {2, 4, 6, 8}. Listing 2.5 shows the kernel version that

the tool generates for the input when an unroll factor of 2 is selected and the target

device is a GPU. Notice how the code is not only unrolled with the selected factor

but it follows an interleaved distribution of the iteration space. If the target were a

CPU, then the macros would assign blocks of consecutive iterations to work-items

in order to favor locality and auto-vectorization. Both the unrolled loop boundary

and the step are calculated to match the workspace configuration selected in the

previous stage.

1 __kernel void addvec(const unsigned int n, __global float *a,

2 __global float *b, __global float *c)

3 {

4 int i;

5 #pragma oclopts unroll 2 8 2

6 for(i=GENINIT(n,g,0), i<GENLIMIT(n,g,0);i=i+GENSTEP(n,g,0))

7 c[i] = a[i] + b[i];

8 }

Listing 2.4: OCLoptimizer vector addition example: annotated kernel

1 __kernel void addvec(const unsigned int n, __global float *a,

2 __global float *b, __global float *c)

3 {

4 int idx = get_global_id (0);

5 int szx = get_global_size (0);

6 int i;

7 for(i=idx; i<n; i+=(szx *2)) {

8 a[i+(szx *0)]=b[i+(idx *0)]+c[i+(szx *0)];

9 a[i+(szx *1)]=b[i+(idx *1)]+c[i+(szx *1)];

10 }

11 }

Listing 2.5: OCLoptimizer vector addition example: generated kernel
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In our running example, there is only one loop annotated with a pragma that

generates 4 versions, one for each unroll factor to test. Finding an optimized version

among them is as easy as running the four versions and picking the best-performing

one. Let us consider another kernel with 2 loops, each annotated with a similar

pragma. In this case, 2 pragmas generating 4 versions each would give place to

4× 4 = 16 versions, and so on. This reasoning can be expanded to a kernel having

n loops, each loop i annotated with a pragma pi that generates vi versions, with

i = 1, 2, . . . , n. Thus, the number of versions generated would be v1 × v2 × . . .× vn,

which can lead to a combinatorial explosion of the search space of feasible versions.

To avoid such situations, providing the tool with alternatives to a pure exhaus-

tive exploration becomes advisable. Because of that, two iterative search processes,

namely a breadth-first search (BFS) and, again, a genetic algorithm (GA), are im-

plemented. Let us discuss them in turn.

Breadth-first search

A breadth-first search (BFS) is an algorithm for traversing graph- or tree-like

data structures. It starts at some node of the data structure to visit and explores the

immediate neighbor nodes first, before moving to those on the next level. Here the

“breadth” qualifier is used in contrast to the orthogonal “depth” algorithms, which

traverse data structures along each branch as far as possible before backtracking.

Figure 2.9 shows this opposition by numbering the nodes of a tree depending on

how it is traversed. Notice also how in the breadth-first example nodes are indeed

visited level by level: root ({1}), first level ({2, 3, 4}), second level ({5, 6, 7, 8}), and

third level ({9, 10, 11, 12}).

1

2 3 4

65 87

1211109

1

2 7 8

63 129

111054

Breadth-first Depth-first

Figure 2.9: Traversal orders of breadth- and depth-first search algorithms
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In a pure exhaustive algorithm, the search space of a problem can be modeled as

an unordered set, since all states are going to be visited in order to find a solution.

However, since a BFS algorithm expects graph- or tree-like structures as input, so

some kind of neighborhood relationships (for graphs), and also a hierarchy (for trees),

must exist among the possible solutions. For our kernel optimization problem, such a

hierarchy relationship is established among annotations, so that they are processed

one by one in the order they appear in the source code, the application of each

pragma giving place to a new level of versions. Figure 2.10 compares the pure

exhaustive and BFS approaches for the case of a kernel with two annotated loops

generating four versions each.

Eventually, all the versions explored by the pure exhaustive search are going

to be also explored by the BFS algorithm, although in its specific breadth-first

order. However, the level-by-level approach followed by the latter method introduces

the generation of some intermediate versions. In the example of Figure 2.10, such

versions are {v1, v2, v3, v4} and they appear when the first pragma has been just

applied but the second one has not been processed yet. This intermediate versions

are going to be quite useful to control the branching of our BFS strategy. This way,

v21 v23 v24v21

v2

v31 v33 v34v32

v3

v41 v43 v44v42

v4

v11 v13 v14v12

v1

B
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Exhaustive search Breadth-first search

Figure 2.10: ES vs. BFS when exploring the search space for two pragmas with four
different values each
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Figure 2.11: Pruning technique example for a 16-version BFS search
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Figure 2.12: Iterative process to select the optimized kernel in OCLoptimizer tool
using a breadth-first search

we can run it and, for example, keep only the two fastest ones and discard the rest, as

Figure 2.11 shows. As a consequence, the versions {v11, v12, v13, v14, v31, v32, v33, v34}
are not going to be generated. On the one hand, this is an advantage, as we are

pruning the search tree and hence reducing the number of possible solutions. On the

other hand, {v1, v3} being worse than {v2, v4} does not imply that all the versions

pruned are slower that the best of those effectively generated.

Figure 2.12 depicts how this strategy has been generalized to implement the

kernel optimization search process following a BFS algorithm. As said before, the

pragmas in the annotated kernel are processed one by one, the application of each

one giving place to a new level of versions. Two consecutive operations are performed

to process each single directive: generation and evaluation. In the generation stage

the pragma is applied, which gives place to a number of versions of the kernel. For
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example, if an unroll pragma is found, new versions of the kernel are generated

by unrolling the annotated loop with the range of unroll factors configured in the

pragma. In the evaluation stage, these kernels are run and their execution times are

collected. If the user has specified the tolerance and/or number modifiers in the

pragma, they are applied to keep only the versions that satisfy the criteria indicated.

Notice how this works as a pruning technique to control the branching of the BFS

strategy. Thus, the surviving versions are used as base kernels for the next iteration

of the optimization process, on which the next pragma found will be applied. This

process is repeated until all the pragmas are processed. In such a moment, the fastest

version of the final step is returned as the optimized version.

Genetic algorithm search

The workflow of the genetic search implemented to get an optimized kernel ver-

sion is quite similar to that used to obtain an optimized workspace configuration, as

Figure 2.13 shows. Nevertheless, they solve different problems and explore different

search spaces, which introduces several particularities that are worth mentioning.

In this problem, each directive found in the input kernel is modelled as a gene,

all directives being gathered into a chromosome. Now individuals are single com-

binations of the values that the parameters of each directive can take. Thus, for

a kernel just having unroll pragmas, a chromosome will contain a set of unroll

factors, each factor being used to unroll the corresponding annotated loop. The

tolerance and number modifiers are dismissed when the directives are processed

by the genetic algorithm, since they are specific parameters for pruning the BFS

strategy. Regarding the quality of a version, the shorter the kernel execution time

is, the better. As the algorithm looks for a maximum, the fitness function is defined

again as the inverse of the execution time associated to a given individual.

In relation to the initial population, the number of individuals is also previously

determined by experimentation. These individuals are randomly created too, but

now the alleles of their genes are values taken from the parameter ranges of the

respective annotations. If the parameter ranges set in the directives are not wide

enough to fill the initial population with random individuals, clones of those already

existing will be created.
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Figure 2.13: Iterative process to select the optimized kernel in OCLoptimizer using
a genetic algorithm

In this search process, the evaluation of the fitness function for an individual

requires a previous kernel generation task. In this step, the value stored in each gene

is used to apply the optimization defined in the corresponding directive. As a result,

a version of the kernel with those optimizations applied is generated. To evaluate

the fitness function for this version, the generated kernel is run three times using the

host code and the optimal workspace configuration obtained in the previous stages,

and getting the average kernel execution time.

The termination condition is quite similar too, as the search process stops when

the fastest version found does not vary along three generations. In that case, this

version is returned. Otherwise, the algorithm makes the population to evolve by the

already described operations of reproduction, crossover and mutation, giving place

to a new generation of individuals and repeating the process.
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Finally, it deserves to be mentioned that both workspace configuration and kernel

optimization genetic algorithms were implemented using the GAlib package [118],

written in C++ by Matthew Wall at the Massachusetts Institute of Technology.

2.3.3. Configuration file

The OCLoptimizer configuration file defines several variables that drive the gen-

eration of the host code and the search of the workspace configuration. This file has

five sections that are now described in turn using the example file in Listing 2.6.

The common parameters section initializes variables that will be used through

the rest of the file and it configures some general settings of the OpenCL host code

to be generated. In the example this section initializes the variable N to 1024. Then,

it establishes that the host code has to use a GPU to perform the computation.

Alternatively, the device variable could take the values CPU, which is used to select

the main processor, or ACC, which is used to select a Xeon Phi if available. If there are

two devices of the same type, the current implementation of OCLoptimizer selects

the first one. The initialization variable specifies how the kernel inputs whose

value are not specified in the configuration file should be initialized in the host code.

In the example, the random value indicates that it should be initialized with random

values. In some cases, a random initialization would not be valid as the contents of

the input data should fulfill certain conditions. In that case, the initialization

variable should be set to code and the path of the file containing the initialization

code should be provided as the third parameter of the tool.

The compiler parameters section configures the compilation process. It provides

the location of the library and headers files of the OpenCL implementation to use,

and the compilation mode, which selects the way the intermediate versions of the

host code to optimize are compiled by the tool. Currently OCLoptimizer only

supports the system compilation mode, which performs the compilation using a call

to the system default compiler.

The workspace definition section sets the parameters related to the workspace

configuration. These are the number of dimensions of the workspace (ndims), and

for each dimension, the global and the local size. As the optimized global and local
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# common parameters

N = 1024

device = gpu

initialization = random

# compiler parameters

mode = system

ocllibpath = /usr/local/lib

oclincludepath = /usr/local/include

# workspace

ndims =1

[ dim0 ]

globalsize = 1,N

localsize = 1,32

# workspace restrictions

localsize < globalsize

# kernel parameters

nparam = 3

[ param0 ]

name = n

size = 1

type = uint

mode = r

value = N

[ param1 ]

name = A

size = N

type = float*

mode = w

[ param2 ]

name = B

size = N

type = float*

mode = r

[ param3 ]

name = C

size = N

type = float*

mode = r

Listing 2.6: OCLoptimizer vector addition example: configuration file content

size will be found iteratively, the user has to specify, separated by commas, the

minimum and the maximum value to test for the sizes of all the local and global

dimensions. The values associated to dimension X are preceded by a [dimX] clause.

In this example the workspace only has one dimension composed of between 1 and N

(globalsize=1,N) work-items and each work-group is composed of between 1 and
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32 work-items (localsize=1,32).

The workspace restrictions section specifies conditions that must be satisfied

by the workspace definition. Workspace configurations that do not fulfill these

conditions must be discarded. In the example, the local workspace size must be

smaller than the global workspace size.

Finally, the kernel parameters section defines the number, the size and the type

of each parameter of the kernel. It must also indicate for each parameter whether

it is a read-only value (r) or a read/write value (w). Unspecified parameters take

a default value. The information associated to the X-th parameter is preceded by a

[paramX] clause. In the example, the kernel receives four parameters called n, A, B

and 0 C, respectively. The first parameter is a read-only (mode=r) scalar (size=1)

called n of type uint. Its default value is value=N. Arrays A, B and C (name=A,

name=B, name=C) have size=N elements of type float (type=float*) and the first

one can be modified inside the kernel (mode=w) while the two others are read-only

(mode=r).

2.4. Support for codes with several kernels

The tool can also optimize OpenCL applications composed of multiple kernels.

In this case, the tool loses its ability to generate a working host code for the whole

application. Keeping this ability would require a much more complex configuration

file. Namely, additional information such as the relations and the data flow between

the different kernels should be provided. Nevertheless, the tool obtains an optimized

workspace configuration and generates an optimized version for each input kernel.

Thus, users can eventually integrate these outputs in their own applications.

The process followed by OCLoptimizer to optimize codes with multiple kernels,

which consists of several fully automated steps, is now described. Some of the kernels

that compose the application may have to use the same workspace configuration,

while others can use one of their own. These two types of kernels are processed

differently by the tool. The kernels that can use their own workspace configuration

are optimized one by one in a separated optimization process, as Figure 2.14 depicts.

In these cases, the user has to provide a separate configuration file (CFi) and an
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annotated code for each kernel (AKi). An optimized workspace configuration and an

optimized kernel result from each separate process. These outputs can be included

in the user application to optimize it.

In the case of groups of kernels that have to use the same workspace configu-

ration, OCLoptimizer follows a three step workflow shown in Figure 2.15. In the

first step, as many optimization processes as kernels to optimize are launched. Each

process requires a configuration file (CFi), an annotated kernel (AKi), and if neces-

sary, an initialization code. In the case of inter-dependent kernels this last optional

parameter is very important. Sometimes, the inputs of these inter-dependent kernels

are intermediate results of the algorithm they implement and they have to comply

with certain characteristics, otherwise such kernels will not run properly. This way,

the inputs of these kernels must be generated using a code provided by the user.

Such inputs are represented as IDi in the Figure 2.15. In addition, the workspace

configuration of this kind of kernels usually has to match certain conditions. These

conditions can be specified in the workspace restrictions section of the configuration

file associated to each kernel (see Section 2.3.3). The output of this step is a set

of optimized workspace configurations, whereas the optimized kernels generated are

discarded.

In the second step, the tool tries one by one all the workspace configurations

obtained in the first step. Thus, each workspace configuration is used to optimize

all the annotated kernels of the group. Notice that in this step only the kernel

optimization process described in Section 2.3.2 is performed, since the candidate

workspace configurations are already given as inputs. The result of this step is a

set of possible optimizations of the user application, each composed of a candidate

workspace configuration and its corresponding group of optimized kernels.

Finally, in a third step, the tool evaluates each possible optimization of the user

application, selecting the one that gives place to the shortest execution time for the

group of optimized kernels. The workspace configuration and the group of kernels

selected in this step are returned to the user, who can use them to optimize the

application.



2.5 Experimental results 67

2.5. Experimental results

As we have seen, OCLoptimizer has the ability to optimize OpenCL codes com-

posed of either one single kernel or multiple kernels. Both features are validated

now in turn. This way, Section 2.5.1 shows the validation performed with several

OpenCL codes composed of one kernel, while Section 2.5.2 shows the experiments

for an OpenCL application composed of five different kernels.

2.5.1. Codes with a single OpenCL kernel

This part of the validation is based on five computationally intensive single-kernel

codes: an N-body simulation [1] (NBODY), a matrix multiplication (MATMUL), a

discretization of the Laplacian operator with a nine-point stencil [101] (STENCIL),

a Sobel Edge Detector [53] (SOBEL) and a Direct Coulomb Summation [108] (DCS).

The NBODY kernel has two unrollable loops and the MATMUL kernel has three

unrollable loops, whereas the STENCIL, SOBEL and the DCS kernels have four

unrollable loops each. Regarding the worskpace configuration, NBODY has one-

dimensional (global and local) workspaces, MATMUL, STENCIL and SOBEL have

two-dimensional workspaces, and finally the workspaces of DCS have three dimen-

sions. Hand-tuned versions of these kernels, which use local memory and have been

vectorized wherever possible, have been used as inputs for this part of the validation

process. Also, calculations common to several threads are performed collaboratively

in order to improve the performance. The experiments were run on three different

platforms:

The CPU: A dual-socket system with two Intel Xeon E5-2660 Sandy Bridge

with eight 2.2Ghz cores and Hyper-Threading (8×2 threads per processor, for

a total of 32) and 64 GB of RAM. Intel OpenCL driver version 1.2-3.2.1.16712.

Single-precision theoretical peak performance of 563 GFLOPS.

The GPU: An NVIDIA Tesla Kepler K20m 5 GB GDDR5. OpenCL runtime:

NVIDIA CUDA Toolkit 5.0.35 with OpenCL driver version 325.15. Single-

precision theoretical peak performance of 3524 GFLOPS.

The Accelerator: An Intel Xeon Phi 5110P with sixty 1.053GHz cores with 8
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GB of RAM. OpenCL runtime: Intel OpenCL 1.2-3.2.1.16712. Single-precision

theoretical peak performance of 2022 GFLOPS.

The exhaustive search of the workspace in the three platforms tested all the legal

combinations of powers of two up to the problem size in the dimensions of the global

index space. Those of the local space were tested up to the maximum size allowed

by the device. The GA search of the workspace configuration used populations of

5 chromosomes in all the systems. Regarding the kernel optimization process, the

directives used no tolerance or number modifiers and they were setup to consider

all the possible unrolls. The GA search used in this case populations with 5% of the

total number of possible chromosomes (combinations of unroll factors for the loops).

Tables 2.1 to 2.6 summarize the performance results obtained in the three plat-

forms using two combinations of search processes: the longest one, which is exhaus-

tive search (ES) for the workspaces and BFS for the kernels (ES+BFS), and the

shortest one, which uses GA search for both optimization processes.

These six tables have the same structure. The first column contains the name

of the code and the second one is the problem size. Three different sizes were

taken into account for each code. Next, columns 3-5 contain the speedup achieved

in the workspace optimization process and the global and the local workspace sizes

(WSs) selected by OCLoptimizer for each dimension of the problem separated by

commas, respectively. The speedup in column 3 has been calculated respect to the

corresponding input baseline hand-tuned kernel. The size of each dimension of the

global workspace is set to the size of the loop whose iterations are being distributed

among the work-items and the local worksizes are left to be selected automatically by

OpenCL. Columns 6-8 refer to the selection of unroll factors. In particular, column 6

shows the speedup achieved, which is calculated with respect to the optimized code

resulting from the workspace optimization process. As a result, the total speedup

provided by OCLoptimizer is the product of the speedups in columns 3 and 6 and will

be discussed in Table 2.7. Finally, columns 7 and 8 contain, separated by commas,

the unroll factors (UFs) selected by the tool and the maximum ones taken into

account, respectively. Notice that the maximum unrolling of the loops that iterate

on elements to process depends on the workspace selection performed in the previous

stage. The reason is that the bigger the workspace is in some dimension, the fewer

elements the loop of each thread has to process.
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Code Size
Workspaces optimization Unroll optimization

Speedup Global WS Local WS Speedup Optimized UFs Maximum UFs

NBODY
16384 3.50 8192 16 1.07 1,9,4 16,16,16
32768 1.89 32768 256 1.03 1,8,8 16,16,16
65536 1.02 8192 128 1.03 8,3,8 16,16,16

MATMUL
1024 1.00 1024,1024 AUTO 1.09 1,1,4 1024,1024,256
2048 1.01 1024,1024 256,1 1.14 1,2,7 2048,2048,256
4096 1.86 8,32 8,1 1.20 6,6,8 4096,4096,256

STENCIL
1024 1.63 16,256 1,32 1.00 1,1,1 1024,1024,3
2048 1.51 16,2048 8,2 1.12 1,21,3 2048,2048,3
4096 1.54 2,2048 2,64 1.06 1,5,3 4096,4096,3

SOBEL
1024 1.50 4,256 1,4 1.09 2,3,114,3 3,1024,1024,3
2048 1.28 8,2048 2,4 1.15 3,1,19,3 3,2048,2048,3
4096 1.30 16,4096 4,4 1.14 3,1,17,3 3,4096,4096,3

DCS
64 1.05 32,64,64 4,32,8 1.00 1,1,1,1 64,64,64,64
128 1.00 128,128,128 4,4,4 1.00 1,1,1,2 128,128,128,128
256 1.00 256,256,256 4,16,8 1.00 2,1,1,2 256,256,256,256

Table 2.1: Speedups and configurations selected using ES+BFS in the CPU

Code Size
Workspaces optimization Unroll optimization

Speedup Global WS Local WS Speedup Optimized UFs Maximum UFs

NBODY
16384 3.52 256 2 1.05 2,10,1 16,16,16
32768 1.90 512 16 1.03 1,13,8 16,16,16
65536 1.00 65536 AUTO 1.06 1,5,5 16,16,16

MATMUL
1024 1.00 1024,1024 AUTO 1.02 1,1,29 1024,1024,256
2048 1.00 2048,2048 AUTO 1.05 1,1,13 2048,2048,256
4096 1.00 4096,4096 AUTO 1.27 1,1,93 4096,4096,256

STENCIL
1024 1.11 512,32 8,2 1.19 16,2,1 1024,1024,3
2048 1.31 1,256 1,2 1.04 1,248,3 2048,2048,3
4096 1.00 4096,4096 AUTO 1.46 1,1,3 4096,4096,3

SOBEL
1024 1.15 128,1024 8,16 1.13 3,1,2,1 3,1024,1024,3
2048 1.16 16,512 8,8 1.07 2,1,91,3 3,2048,2048,3
4096 1.25 256,4096 8,4 1.10 1,1,15,3 3,4096,4096,3

DCS
64 1.05 64,32,16 32,2,16 1.00 1,1,1,1 64,64,64,64
128 1.00 8,128,64 4,1,2 1.00 1,1,16,2 128,128,128,128
256 1.00 256,256,256 AUTO 1.00 1,1,15 256,256,256,256

Table 2.2: Speedups and configurations selected using GA in the CPU

Code Size
Workspaces optimization Unroll optimization

Speedup Global WS Local WS Speedup Optimized UFs Maximum UFs

NBODY
16384 1.50 8192 256 1.07 1,4,16 16,16,16
32768 1.69 32768 128 1.07 1,10,16 16,16,16
65536 1.70 65536 128 1.29 1,2,14 16,16,16

MATMUL
1024 1.00 1024,1024 AUTO 1.35 1,1,256 1024,1024,256
2048 1.08 256,2048 64,4 1.11 1,8,32 2048,2048,256
4096 1.06 512,4096 64,2 1.11 1,8,16 4096,4096,256

STENCIL
1024 2.36 64,1024 32,16 1.16 1,1,3 1024,1024,3
2048 2.71 64,2048 32,16 1.16 1,1,3 2048,2048,3
4096 2.87 64,2048 64,16 1.14 2,1,3 4096,4096,3

SOBEL
1024 3.85 64,256 32,4 1.15 1,4,16,3 3,1024,1024,3
2048 4.29 256,512 128,1 1.21 3,4,1,1 3,2048,2048,3
4096 4.53 256,512 128,1 1.25 2,8,1,1 3,4096,4096,3

DCS
64 1.15 32,64,64 32,1,4 1.44 1,1,2,6 64,64,64,64
128 1.00 128,128,128 AUTO 1.54 1,1,1,11 128,128,128,128
256 1.03 128,128,128 16,8,8 1.16 1,2,2,256 256,256,256,256

Table 2.3: Speedups and configurations selected using ES+BFS in the GPU



70 Chapter 2. OCLoptimizer

Code Size
Workspaces optimization Unroll optimization

Speedup Global WS Local WS Speedup Optimized UFs Maximum UFs

NBODY
16384 1.47 8192 64 1.06 1,4,8 16,16,16
32768 1.67 32768 64 1.06 1,2,15 16,16,16
65536 1.22 8192 64 1.07 4,1,16 16,16,16

MATMUL
1024 1.00 1024,1024 AUTO 1.02 1,1,29 1024,1024,256
2048 1.00 2048,2048 AUTO 1.05 1,1,13 2048,2048,256
4096 1.00 4096,4096 AUTO 1.17 1,1,34 4096,4096,256

STENCIL
1024 2.10 128,1024 16,16 1.03 1,4,3 1024,1024,3
2048 2.08 512,64 512,1 1.24 26,3,3 2048,2048,3
4096 2.72 256,2048 64,4 1.08 1,8,3 4096,4096,3

SOBEL
1024 3.66 512,64 128,1 1.16 1,15,2,3 3,1024,1024,3
2048 4.02 512,256 16,32 1.11 3,2,2,3 3,2048,2048,3
4096 2.13 512,16 32,8 1.13 2,2,1,3 3,4096,4096,3

DCS
64 1.00 64,64,64 AUTO 1.06 1,1,1,8 64,64,64,64
128 1.00 128,128,128 AUTO 1.52 1,1,1,6 128,128,128,128
256 1.00 256,256,256 AUTO 1.14 1,1,1,10 256,256,256,256

Table 2.4: Speedups and configurations selected using GA in the GPU

Code Size
Workspaces optimization Unroll optimization

Speedup Global WS Local WS Speedup Optimized UFs Maximum UFs

NBODY
16384 14.58 16384 16 1.60 1,1,16 16,16,16
32768 8.14 32768 16 1.60 1,1,16 16,16,16
65536 4.26 65536 32 1.38 1,16,6 16,16,16

MATMUL
1024 1.00 1024,1024 AUTO 1.36 1,1,4 1024,1024,256
2048 1.00 2048,2048 AUTO 1.00 1,1,1 2048,2048,256
4096 1.00 4096,4096 AUTO 1.00 1,1,1 4096,4096,256

STENCIL
1024 1.46 32,512 1,4 1.35 2,8,3 1024,1024,3
2048 1.61 8,2048 1,1 1.69 1,8,3 2048,2048,3
4096 1.69 32,1024 1,1 1.86 2,8,3 4096,4096,3

SOBEL
1024 1.46 16,512 1,1 1.65 2,2,7,3 3,1024,1024,3
2048 1.52 16,512 1,1 2.40 2,1,4,3 3,2048,2048,3
4096 1.51 32,4096 2,2 2.77 3,1,16,3 3,4096,4096,3

DCS
64 1.00 64,64,64 AUTO 1.12 1,1,1,8 64,64,64,64
128 1.00 128,128,128 AUTO 1.07 1,1,1,8 128,128,128,128
256 1.01 256,256,256 4,4,4 1.06 1,1,1,8 256,256,256,256

Table 2.5: Speedups and configurations selected using ES+BFS in the Accelerator

Code Size
Workspaces optimization Unroll optimization

Speedup Global WS Local WS Speedup Optimized UFs Maximum UFs

NBODY
16384 6.33 8192 128 1.70 2,2,6 16,16,16
32768 7.33 16384 16 1.51 1,2,16 16,16,16
65536 3.58 8192 4 1.68 4,7,4 16,16,16

MATMUL
1024 1.00 1024,1024 AUTO 1.00 1,1,1 1024,1024,256
2048 1.00 2048,2048 AUTO 1.00 1,1,1 2048,2048,256
4096 1.16 256,4096 2,32 1.01 1,2,1 4096,4096,256

STENCIL
1024 1.00 1024,1024 AUTO 1.46 1,1,3 1024,1024,3
2048 1.25 512,1024 256,1 2.00 2,4,3 2048,2048,3
4096 1.60 32,4096 4,4 1.93 1,16,3 4096,4096,3

SOBEL
1024 1.00 1024,1024 AUTO 1.76 1,1,1,3 3,1024,1024,3
2048 1.32 512,1024 4,8 2.27 1,2,4,3 3,2048,2048,3
4096 1.00 4096,4096 AUTO 2.26 1,1,1,3 3,4096,4096,3

DCS
64 1.00 64,64,64 AUTO 1.06 1,1,1,8 64,64,64,64
128 1.00 32,32,64 1,4,1 1.04 2,4,1,8 128,128,128,128
256 1.01 128,128,256 4,4,1 1.03 1,2,1,12 256,256,256,256

Table 2.6: Speedups and configurations selected using GA in the Accelerator
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Code Size
CPU GPU Accelerator

ms (Speedup) (GFLOP/s) ms (Speedup) (GFLOP/s) ms (Speedup) (GFLOP/s)

NBODY
16384 178.99 (3.75) (25.50) 29.74 (1.61) (153.46) 143.25 (23.33) (31.86)
32768 704.48 (1.95) (25.91) 87.44 (1.81) (208.76) 510.76 (13.02) (35.74)
65536 2818.35 (1.05) (25.91) 287.46 (2.19) (254.00) 2266.06 (5.88) (32.22)

MATMUL
1024 38.29 (1.09) (56.08) 6.61 (1.35) (324.88) 146.64 (1.36) (14.64)
2048 282.73 (1.15) (60.76) 57.91 (1.20) (296.66) 1537.07 (1.00) (11.18)
4096 15200.90 (2.23) (9.04) 459.04 (1.18) (299.41) 16137.20 (1.00) (8.52)

STENCIL
1024 1.25 (1.63) (15.88) 0.28 (2.73) (71.30) 3.18 (1.97) (6.27)
2048 2.85 (1.70) (27.95) 0.94 (3.16) (84.78) 7.13 (2.73) (11.18)
4096 10.49 (1.63) (30.37) 3.59 (3.27) (88.80) 22.83 (3.14) (13.97)

SOBEL
1024 1.63 (1.63) (26.38) 0.43 (4.41) (100.31) 2.98 (2.41) (14.44)
2048 4.81 (1.47) (35.78) 1.43 (5.21) (120.26) 6.16 (3.66) (27.93)
4096 17.55 (1.49) (39.19) 5.24 (5.64) (131.18) 19.31 (4.17) (35.62)

DCS
64 11.08 (1.05) (15.14) 1.45 (1.65) (115.75) 19.17 (1.12) (8.75)
128 175.92 (1.01) (15.26) 20.81 (1.54) (129.02) 274.23 (1.07) (9.79)
256 2802.33 (1.00) (15.33) 459.93 (1.19) (93.38) 4293.58 (1.07) (10.00)

Table 2.7: Global speedups using ES+BFS

The average global speedup achieved for codes with a single OpenCL kernel

using ES+BFS is 2.86, compared to the 2.22 achieved by GA. The tool obtains the

largest speedups in the Xeon Phi (4.46 on average using ES+BFS) and, in this case,

most of the speedup comes from the workspace optimization and, more precisely,

from the NBODY test case. Since the tool usually selects large workspace sizes in

all the kinds of devices, the margin left to the unrolling optimization is narrower in

terms of search space, which can restrict the speedups obtained from the selection

of the unroll factors (UFs). Nevertheless, the simplicity of their cores and their

management of branches allow GPUs to remarkably benefit from unrolling. For

example, DCS with size 128 achieves 54% more performance thanks to the kernel

code tuning.

Table 2.7 summarizes the execution time, the global speedup and the perfor-

mance measured in GFLOP/s achieved in our experiments for each code, problem

size, and platform using the ES+BFS search. The speedup achieved by the opti-

mized single kernel codes generated using the configurations selected by ES+BFS

search is on average a 29% better than those generated using the configurations

selected by GA. On exchange, the execution time of the tool is much longer when

using the ES+BFS search, as we will see now.

Figures 2.16a to 2.16e show the time required by the search processes discussed

for NBODY, MATMUL, STENCIL, SOBEL and DCS, respectively. Each figure is

divided into six sections, one for each combination of a device (CPU, GPU and



72 Chapter 2. OCLoptimizer

CPU ES+BFS  CPU  GA  GPU ES+BFS  GPU  GA  ACC ES+BFS  ACC  GA  
0

0.5

1

1.5

2

2.5
x 10

5

ti
m

e
 (

s
.)

 

 

ws generation

ws evaluation

kernel generation

kernel evaluation

(a) NBODY

CPU ES+BFS  CPU  GA  GPU ES+BFS  GPU  GA  ACC ES+BFS  ACC  GA  
0

2

4

6

8

10

12
x 10

4

ti
m

e
 (

s
.)

 

 

327743 ws generation

ws evaluation

kernel generation

kernel evaluation

(b) MATMUL

CPU ES+BFS  CPU  GA  GPU ES+BFS  GPU  GA  ACC ES+BFS  ACC  GA  
0

2000

4000

6000

8000

10000

12000

14000

ti
m

e
 (

s
.)

 

 

ws generation

ws evaluation

kernel generation

kernel evaluation

(c) STENCIL

CPU ES+BFS  CPU  GA  GPU ES+BFS  GPU  GA  ACC ES+BFS  ACC  GA  
0

5000

10000

15000

ti
m

e
 (

s
.)

 

 

ws generation

ws evaluation

kernel generation

kernel evaluation

(d) SOBEL

CPU ES+BFS  CPU  GA  GPU ES+BFS  GPU  GA  ACC ES+BFS  ACC  GA  
0

1

2

3

4

5

6

7
x 10

5

ti
m

e
 (

s
.)

 

 

ws generation

ws evaluation

kernel generation

kernel evaluation

(e) DCS

Figure 2.16: Search time distribution for OCLoptimizer test cases
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Accelerator) and search process (ES+BFS or GA). Each section shows the search

time for each tested problem size, from the smallest one to the largest one with

bars divided into four stages: the workspace generation and evaluation times, which

characterize the first optimization process, and the kernel optimization generation

and evaluation times of the second search process.

The results show that the execution time of the tool is usually large because it

generates a large number of versions of the code to be optimized. Unsurprisingly,

ES+BFS requires longer search times than GA, as it generates more versions. On

average, the search time using ES+BFS is ten times longer than using GA.

Most of the execution time is consumed by the evaluation process, which is

conducted by executing the different versions generated. In the future, we want to

evaluate the possibility of reducing the evaluation time by avoiding some or all the

executions by means of the application of analytical models or heuristics. On the

other hand, the generation time is negligible.

The time required by the unrolling optimization is usually longer that the one re-

quired by the workspace optimization because this second iterative process generates

a larger number of versions. In some of the GPU tests the workspace optimization

takes more time as the workspace range to be explored is wider and it generates a

larger number of versions. Moreover, as it was said previously, the worksizes selected

are usually large, which leaves a narrower margin for the unrolling technique.
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CPU
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Figures 2.17a and 2.17b represent the speedups achieved using different workspace

configurations and unroll factors, respectively. In both cases, the different workspaces

and unroll factors have been generated by OCLoptimizer using ES+BFS for the

SOBEL filter and size 1024× 1024 on the CPU. The order of the workspace config-

urations and the unroll factors in the x-axis is the one in which they are generated

by the tool. On the one hand, the results show that, in this example, the search of

the workspace configuration explores a huge range of combinations for both global

and local work sizes, and how this exhaustive search is done following a tree-like

structure. On the other hand, the amorphous distributions of the speedups denote

that the iterative optimization is adequate to guide these optimizations.

2.5.2. Codes with several kernels

The tool has been tested on the Integer Sort (Benchmark) of the NAS Parallel

Benchmarks (NPB). The baseline of these experiments is the (Seoul National Uni-

versity) SNU OpenCL NPB [96] implementation of this benchmark, which has 5

different kernels. There are two versions of this benchmark, one suitable for CPU

and another one suitable for GPU. In both implementations, several kernels use

as inputs intermediate results which have to comply with certain characteristics,

thus, special initialization codes had to be provided to the tool. In the GPU imple-

mentation, three of these kernels are inter-dependent and they must use the same

workspace configuration, while in the CPU implementation the number of inter-

dependent kernels is four. The experiments have been run on the same CPU and

GPU used in the experiments of Section 2.5.1. The SNU NPB CPU version is used

as the baseline for the CPU experiments, and its GPU version for the GPU. The

Accelerator platform has not been used in these experiments as the SNU NPB suite

does not have an implementation optimized for the Xeon Phi.

Tables 2.8 and 2.9 contain the speedups achieved by OCLoptimizer using the

ES+BFS and the GA search processes respectively. The experiments were performed

for three problem sizes: S, W and A. The tables show the speedups obtained from

the workspace optimization and the unroll optimization, both calculated following

the same approach as in Section 2.5.1. The last column contains the execution time

of the best version of the benchmark generated and the speedup with respect to the
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Device Size
Workspace optimization Unroll optimization Overall results

Speedup Speedup Time in ms (Speedup)

CPU
class S 3.69 1.08 8.92 (3.99)
class W 1.99 1.04 20.13 (2.07)
class A 1.12 1.15 85.93 (1.29)

GPU
class S 1.03 1.04 1.46 (1.07)
class W 1.12 1.10 5.03 (1.22)
class A 1.10 1.02 49.67 (1.12)

Table 2.8: Speedups and execution times for the IS benchmark using ES+BFS

Device Size
Workspace optimization Unroll optimization Overall results

Speedup Speedup Time in ms (Speedup)

CPU
class S 2.51 1.24 11.72 (3.11)
class W 1.82 0.97 24.84 (1.77)
class A 1.04 1.00 102.65 (1.04)

GPU
class S 1.03 1.02 1.50 (1.06)
class W 1.08 1.03 5.17 (1.11)
class A 1.09 1.02 50.11 (1.12)

Table 2.9: Speedups and execution times for the IS benchmark using GA

baseline. The workspace configurations and unroll factors chosen are not reported

because of the large amount of data they imply given the existence of up to 5

kernels in the codes. As expected, the ES+BFS search obtains better results than

the GA. The speedups in the CPU (3.03 on average for ES+BFS) are larger than

in the GPU (1.13 on average for ES+BFS), and most of the speedup comes from

the workspace optimization. These observations are similar to those made for the

single kernel codes. The main conclusion of this experiment is that OCLoptimizer

not only supports codes with strong inter-dependencies between their kernels, but

it can also achieve respectable speedups despite working on hand-tuned state of the

art implementations such as these two IS SNU NPB codes.

2.6. Conclusions

Two of the main weaknesses of OpenCL are the low level of its host API, which

makes the development of its host codes tedious and error-prone, and, more impor-

tantly, the lack of performance portability. In this chapter we present OCLopti-

mizer, a tool that addresses both issues with a reduced programming effort. Given

a configuration file and a kernel annotated with indications on the optimizations

to try, OCLoptimizer is able to generate a working host code, find an optimized
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workspace configuration and tune the kernel for the platform where the tool is exe-

cuted. Moreover, thanks to the iteration distribution macros introduced to support

generic configurations for both global and local workspaces, the input kernels can be

not only naive implementations mapped to global memory positions but also more

optimized versions that exploit the local memory to some extent. Furthermore, the

tool also supports the automated optimization of both groups of independent kernels

and applications with inter-dependent kernels. As far as we know, this latter feature

is unique, although in this case the generation of the host code is not automated.

Our tool finds an optimized workspace and an optimized kernel code through

search processes based on measurements of the execution time. While the workspace

search can be exhaustive or guided by a genetic algorithm (GA), the kernel opti-

mization can be performed following a breadth first search (BFS) that considers

each optimization directive individually or a GA that considers all of them at once.

An evaluation performed using a CPU, a GPU and the new Intel Xeon Phi pro-

cessor shows that OCLoptimizer successfully tunes OpenCL codes for the different

platforms. This validation targets codes with both a single and multiple OpenCL

kernels.

In codes with a single OpenCL kernel, the achieved speedup is 2.22 when using

the GA in the workspace and kernel code search processes and 2.86 when using

ES+BFS. In these experiments, the maximum speedup using the GA is 11.07, while

using ES+BFS it is 23.33. Notice that although the speedups of GA are more

modest than those of ES+BFS, the searches guided by the GA are, on average,

ten times faster than those that rely on ES+BFS, which makes it more attractive

in some scenarios. Focusing on ES+BFS, the average speedups it achieves are

1.59, 2.54 and 4.46 for the CPU, the GPU and the Intel Xeon Phi, respectively.

These speedups show that all the platforms benefit from the usage of our tool, the

effect being stronger in the accelerators. This is not surprising, as accelerators are

known to be more sensitive than CPUs to code and workspace changes. Both kinds

of optimizations are very important, as in every device considered we have found

situations in which one of them gave place to the biggest performance improvement.

The IS benchmark of the SNU NPB has been used to validate the support of the

tool for codes composed of several OpenCL kernels. In this case, the experiments
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were run only on the CPU and the GPU, achieving an average global speedup of 1.79

(2.45 for CPU and 1.19 for GPU). These speedups are more modest than those ob-

served in the single kernel benchmarks but the baseline used for these experiments is

a hand-tuned state-of-the-art implementation of the benchmark. These experiments

confirm that the ES+BFS approach is more effective than the GA search and that

most of the speedup comes from optimizing the workspace configuration. However,

in this benchmark the largest speedups are achieved in the CPU.

2.7. Related work

Iterative search techniques based on actual runtime measurements [56, 89] or

analytical models [37, 38] have been widely used to automatically tune codes for

different architectures. On the other hand, while performance portability in the

context of parallel languages has been studied for a long time [75], it has lately

regained interest due to the heterogeneity of the available accelerators.

For example, the elastic computing framework [120] separates functionality from

implementation details using specialized functions. For each of these elastic func-

tions, the framework explores a collection of alternative implementations and then

selects the optimal one depending on the computing resources available and some

run-time parameters. This work is limited by the fact that the code has to be ex-

pressed using the available specialized functions. This important limitation is not so

strong in OCLoptimizer, which processes native OpenCL code written using special

macros and annotated with pragmas.

Iterative compilation is used in [23] to select the optimal parameters for GPU

codes in a given platform according to a set of pre-defined parametrized templates.

This work is specifically focused on obtaining a portable linear algebra library by

selecting optimal parameters specific for such operations. OCLoptimizer targets any

OpenCL platform, and it selects optimized workspace configurations and unroll

factors for any input code.

From the point of view of providing an adaptive scheduling, StarPU [10] au-

tomates the efficient mapping of tasks in heterogeneous environments, although it

cannot tune the performance of each individual task. However, OCLoptimizer does
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tune the performance of individual tasks.

VForce [71] provides performance portability in a transparent way across different

kinds of accelerators to programs written in the VSIPL++ (Vector Signal Image

Processing Library extension), a domain-specific language focused on image and

signal processing. The auto-tuner presented in [21] works on top of the SkePU [25]

skeleton programming framework. It performs a previous machine learning process

to predict the best execution plan for applications running in multi-GPU systems.

The PARTANS framework [64], which is specifically designed to express stencil

computations in such systems, includes auto-tuning mechanisms to optimize the

task partitioning of computations. By design, this optimization tunes indirectly

some domain-specific aspects of the kernels. All these approaches share their domain-

specific nature, such a limitation not being present in OCLoptimizer as it targets

OpenCL kernels no matter the particular domain of the problem they solve.

Orio [44] is an extensible framework for the generation and empiric evaluation of

optimized codes for multiple targets. Like OCLoptimizer, the auto-tuning tools built

on top of Orio rely on annotated kernels. However, these annotations must provide

a thorough description about the target environment, the optimization conditions

and the computation performed. Thus, they include details such as some program

building options or the input sizes for the problem, the optimization parameters, and

how these parameters are mapped to the different optimizations supported by the

tool. Exhaustive, randomized, simplex, and simulated annealing search strategies

can be used for tuning the values for the parameters. By default, all these algorithms

are driven by the execution time of the generated codes. Moreover, in the annotations

requesting the optimization of a particular code section, a copy of that section

must be also included, i.e., the framework does not parse the original code but

that one replicated inside the annotation. OCLoptimizer proposes a lighter format

for the annotations, which redounds on cleaner annotated kernel files. On the one

hand, all the configuration parameters that are not directly related to the kernel

transformations themselves are specified in a separated file, and, on the other hand,

it does not require the user to replicate the code inside the annotation but parses it

directly by means of Clang.

An example of an auto-tuner built on top of Orio is orCUDA [65], which gener-

ates complete optimized CUDA code from an annotated C loop. These annotations
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drive an iterative optimization process to select the size of the grid of threads, the

size of the the thread blocks and certain parameters of different optimization tech-

niques, including loop unrolling. This work is focused on CUDA, so it cannot be

used to tune codes for CPUs or other accelerators, including non-Nvidia GPUs, and,

although they present examples with more complex codes, the validation only uses

small kernels, with a single loop, which are used in the the resolution of partial dif-

ferential equations. OCLoptimizer also targets non-Nvidia GPUs, CPUs and other

accelerators as it is based on OpenCL, and the codes included in our experimental

results are more complex than those in this work.

Focusing on OpenCL, OrCL [17] is an auto-tuner also built on top of Orio,

and hence it is based on parametrized kernel annotations. These parameters al-

low to tune the iteration distribution among work-items in both global and local

workspaces, the unroll factors for inner compute loops, and whether work-items in

a group should copy input data chunks located in global memory into local mem-

ory before operating on it. OCLoptimizer does not automate this usage of local

memory as a cache, although it does support input kernels already tuned in such a

way. Moreover, OrCL can be also commanded to provide the compiler with some

hints about the sizes for the global and local workspaces and the vector lengths that

the OpenCL auto-vectorizer can try. Such hints are translated into kernel attributes

added to the code. Unlike OCLoptimizer, unrolling is performed by adding #pragma

unroll annotations on kernels instead of effectively transforming the loops. Further-

more, the unroll of the loops derived from the iteration distribution adjustment is

not supported. The tool is validated by optimizing five simple linear algebra ker-

nels for several NVIDIA and AMD GPUs, and for an Intel Xeon Phi accelerator.

The codes used to validate OCLoptimizer were more complex, some being part of

an application with inter-dependent kernels, and also an Intel multicore CPU was

used as target device. Both OrCUDA and OrCL are also able to use the information

provided in the annotations to built CUDA host function calls and OpenCL host

codes respectively.

The uCLbench microbenchmarking suite [109] offers a tool to characterize the

properties of the devices available in a platform and the OpenCL implementations

installed on them. The results of this profiling process are translated into guidelines

that programmers can follow to tune their codes manually. The main changes re-
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quired to port the performance of OpenCL codes that have been tuned for GPUs

to CPUs are discussed in [60] and [99]. A common point in both papers is the im-

portance of adapting the granularity of a kernel depending on the kind of the target

device, which is one of the transformations applied and tuned by OCLoptimizer.

GLOpenCL [20] is a unified development framework that supports OpenCL on

different types of multicores. This framework consists of a compiler and a run-

time library. The compiler is based on LLVM and it performs a set of source-to-

source transformations such as serialization of logical threads, elimination of syn-

chronization operations and variable privatization. Its effectiveness is validated by

testing five different kernels on different multicore platforms. The results show that

the performance achieved using GLOpenCL is close to that obtained by vendor-

provided implementations. Unlike OCLoptimizer, that tool does not select an opti-

mized workspace configuration.

Finally, Dolbeau et al [22] discuss the performance differences observed when the

same OpenCL code is run on different platforms. They use the CAPS compiler to

generate autotuned OpenCL code. This compiler can optimize the group size but not

the global workspace. Nevertheless, OCLoptimizer obtains important performance

gains from the selection of both the global and the local workspace sizes.
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Self-adaptive HPL kernels

The Heterogeneous Programming Library (HPL) [114] is a C++ framework that

improves the programmability of heterogeneous systems. To achieve this purpose, it

provides an embedded kernel language to express parallelized computations, and an

higher-level API that makes the execution of these kernels considerably easier than

through a conventional OpenCL host code. HPL uses OpenCL kernels as its back-

end, so that it inherits its functional portability, and hence can be termed as a unified

programming mechanism for heterogeneous systems. Moreover, the framework pro-

vides programmers with the necessary tools to make their kernels also performance-

portable. Namely, a proper combined usage of the embedded kernel language and

plain C++ code constructs enables the run-time code generation (RTCG) capabili-

ties of the framework, which can be exploited to write self-adaptive generic kernels.

While other tools enable RTCG using similar mechanisms [11, 18], they only target

regular CPUs.

This chapter introduces a set of techniques implemented following the aforemen-

tioned approach, and which can be used as building blocks to develop self-optimizing

kernels in HPL. We explain these techniques focusing on the matrix multiplication

algorithm as a case study. The adaptability of the resulting implementation relies

on several configuration parameters of each kernel that drive certain aspects about

how its code is generated and optimized. The values for these parameters are ad-

justed along an iterative search process based in a genetic search algorithm, which

generates and runs a kernel for each combination of values to test. The parametrized

81
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implementation of these optimization techniques allows to select tuned unroll factors

for some loops, a tuned granularity for the work performed by each instance of the

kernel, which variant of an algorithm is going to be used, which data structures are

stored in local memory, the best loop ordering and the best vector size. Our self-

optimizing matrix multiplication is based on existing implementations for NVIDIA

GPUs [59], AMD GPUs [68], and any kind of devices supporting OpenCL [110],

this latter one being a solid foundation for a performance-portable approach. Our

implementation uses not only techniques similar to those introduced in these previ-

ous works, but also new ones. The performance of our kernels is compared to two

state-of-the-art adaptive implementations, clBLAS [19] and ViennaCL [110]. These

two implementations were chosen because (a) they use OpenCL, and thus, they

target the same range of platforms as HPL, and (b) they provide adaptive mecha-

nisms to enable performance portability. Our study also covers the OpenCL-based

clMAGMA library [15], as it relies on clBLAS for its OpenCL BLAS routines.

The rest of the chapter is organized as follows. Section 3.1 introduces the HPL

framework, describing both its main features and its architecture, and then focusing

on the fundamentals that users must know to program their own kernels. Section 3.2

explains first how the RTCG capabilities of HPL can be enabled and used to write

parametrized generic kernels, then a set of optimization techniques implemented

in that way are described, and finally a search process to find suitable values for

these parameters is outlined. Section 3.3 focuses on the case study, presenting the

matrix multiplication algorithm implemented as an HPL self-adaptive kernel, its

tunable parameters, and how optimized values for them are found by means of a

genetic search. The experimental results obtained in several platforms are discussed

in Section 3.4. Our conclusions about the development of this tool are exposed in

Section 3.5, followed by a review in Section 3.6 of some related pieces of work about

other approaches for both the generation of self-adaptive code and the optimization

of linear algebra routines in heterogeneous devices.

3.1. The Heterogeneous Programming Library

The Heterogeneous Programming Library (HPL), which is publicly available at

http://hpl.des.udc.es, intends to improve the programmability of heterogeneous

http://hpl.des.udc.es
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systems while providing portability through an approach where parallelism is ex-

tracted by means of computational kernels written in an embedded language built

on top of C++. These kernels are translated into an intermediate representation

(IR) which is currently OpenCL code. By targeting the same range of devices sup-

ported by OpenCL, the library provides functional portability to the same extent

as OpenCL. Moreover, the way the kernel language is built on top of C++ en-

ables the use of this latter language as metaprogramming mechanism to generate

different kernel codes on run-time. These generic programming and run-time code

generation (RTCG) features can be exploited to provide performance portability,

and also to automate it to some extent. Thus, the self-adaptive kernels approach

we present in this chapter relies on such powerful capabilities to achieve both code

and performance portability.

3.1.1. Framework architecture

The architecture of the HPL library is clearly inspired on that of the OpenCL

standard, being also organised in several models that define its parts. Regarding

the hardware model, it is composed by a host equipped with a standard CPU and

memory, with a number of computing devices attached. The host runs the sequential

parts of the code, while the devices run the parallel parts. Each device has a number

of processors that execute SPMD parallel code on data present in the memory of their

device. The memory model distinguishes the same kinds of memory as OpenCL,

this is, global, local, constant and private memory regions, each with the same

properties.

While all the processors in a device must run the same code in SPMD mode,

processors in different devices can run different codes. This way, the library sup-

ports both data and task-parallelism. Likewise OpenCL, the host memory space is

separated from the global memory space of each device. The kernels can work only

with data available in the devices, hence an automated mechanism to transfer input

data from the host to the devices, and output data backwards, is provided.

Parallel computations are expressed as kernels written in the embedded lan-

guage. Several instances of each kernel, or work-items using OpenCL terminology,

can be executed in parallel, each instance being univocally identified. The number



84 Chapter 3. Self-adaptive HPL kernels

of instances of the kernels and their identifiers are defined by a global domain of

non-negative integers with up to 3 dimensions. This way, instances are identified

inside this domain with tuples of global identifiers. In turn, these instances can be

associated in groups. With this purpose, we can define local domains as equal por-

tions of the global domain. Instances are identified inside its group using tuples of

local identifiers. As in OpenCL, threads in such groups can be synchronized through

barriers in order to share a small scratchpad memory.

In the OpenCL running example developed in Section 2.1.4 we described the

process that a user must follow to write an OpenCL host code able to run a kernel

on the minimum environment needed. We also exposed the difficulties that inexpe-

rienced users may experience when dealing with concepts like execution contexts,

compilation of kernel objects or command queue management through the host API

provided by OpenCL for such purpose. HPL also contributes to mitigate this prob-

lem by offering a higher level interface that hides or even automates many details

related to host programming.

In addition, generic programming is enabled by supporting the use of templates

both in kernels and data types, and plain C++ code can be included in kernels

to exploit the aforementioned run-time code generation capabilities. Such features

considerably simplify the procedures of run-time generation and selection of multiple

kernel versions. This Chapter thoroughly explanins how such capabilities can be

exploited.

3.1.2. Programming front-end

The library provides users with a programming front-end which is composed of

the following three main components:

A template class Array to define both the variables to be transferred between

the host and the devices, and the variables that are local to the kernels.

The kernels, which are functions that express computations in the embedded

language provided by the framework.

A host API that will be used by the code to inspect the devices available in

a platform and to order the execution of the kernels.
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The code in Listing 3.1 implements in HPL the SAXPY (Single-precision real

Alpha X Plus Y) vector BLAS routine, which computes Y = a×X + Y . This code

will be used as a running example to support the description and some indications

about the usage of these components. Let us start pointing out line 1 of the example,

which must be included in any code using the library. Line 2 relies on the C++ using

namespace construction to be able to use the functions and data types imported from

the HPL library without having to precede them by their namespace in each use.

The Array data type

All the kernel variables must have the type Array<type, n [, memFlag]>,

which represents an n-dimensional array of elements of a C++ type, or a scalar

for n=0. The flag memFlag is used to indicate the kind of memory in which the

variable is stored, the four types of OpenCL memory available being identified by

the values Global, Local, Constant and Private. The elements that compose an

array may be any of the usual C++ arithmetic types or a struct.

As we have just said, when n is 0 the variable is a scalar indeed. The library

provides also some convenience types (Int, UInt, Float, Size t, . . . ) that simplfy

the definition of scalars of their respective C++ types. Such types can be used

both in the host code (line 9) and in the kernel function (line 4, third argument

of the function). As the native OpenCL code, HPL offers also vector types such

as Int2, Float4, etc. These vectors can be indexed to access their components

1 #include "HPL.h"

2 using namespace HPL;

3
4 void saxpy(Array <float ,1> y, Array <float ,1> x, Float a) {

5 y[idx] = a * x[idx] + y[idx];

6 }

7
8 int main(int argc , char *argv) {

9 Float a;

10 Array <float , 1> x(1000) , y(1000);

11 //x, y and a are filled in with data (not shown)

12 eval(saxpy)(y, x, a);

13 }

Listing 3.1: HPL SAXPY running example
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and manipulated with several functions and operators, including the standard ones.

Both vectors and scalars can be mixed too to perform computations.

The arrays passed as input/output arguments to the kernels must be declared

in the host memory space. These variables are initially stored in the host memory,

but the library detects their usage as kernel arguments and in such case, if needed,

it automatically allocates a buffer for each one in the required device and performs

the appropriate data transfers. When a host array or kernel argument declaration

has no specification for the memoryFlag, it is asummed as Global. The arrays x

and y declared in line 10 are examples of this. In turn, variables defined inside a

kernel cannot be tagged as Global or Constant, but they are Private by default.

Nevertheless, they can be also defined as Local, such arrays being shared by all the

threads in a group.

Embedded kernel language

Along with the usage of the data types described, the HPL kernels also require

their control flow structures to be written using both special keywords and a for-

matting slightly different from those of C++. Namely, the constructs are the same

as in C++ but their name finishes with an underscore (if , for , . . . ). Moreover,

the arguments to for loops are separated by commas instead of semicolons.

The library provides an API based on predefined variables to obtain the global,

local and group identifiers as well as the sizes of the domains and numbers of groups.

For example, idx provides the first dimension of the global identifier of a work-item,

while szx provides the global work size for that dimension. If we add the l prefix

Meaning
Dimension number

First (x) Second (y) Third (z)
Global identifier idx idy idz

Local identifier lidx lidy lidz

Global domain size szx szy szz

Local domain size lszx lszy lszz

Group id gidx gidy gidz

Number of groups ngroupsx ngroupsy ngroupsz

Table 3.1: HPL predefined variables
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to these keywords we obtain their local counterparts, and if we replace the letter

x with y or z, we obtain the same values for the second and the third dimensions

respectively. Table 3.1 gathers all the predefined variables provided by HPL.

The HPL kernels are written as regular C++ functions that use the aforemen-

tioned elements and whose parameters are passed by value if they are scalars, and

by reference otherwise. In our SAXPY running example, the function defined in

lines 4-6 from Listing 3.1 implements a kernel for which each instance idx computes

a different position of the result y[idx].

However, with the current implementation, our running example suffers from the

drawback that it is specialized for computing just float vectors. HPL offers a very

useful feature to overcome this issue, since its kernel functions can also be instan-

tiations of C++ function templates. The function shown in Listing 3.2 implements

a templated version of the SAXPY kernel1. Notice also how the templated type

definition requires the scalar argument a to be typed as Array<T,0>.

1 template <typename T>

2 void saxpy(Array <T,1> y, Array <T,1> x, Array <T,0> a) {

3 y[idx] = a * x[idx] + y[idx];

4 }

Listing 3.2: Generic HPL SAXPY function example

Moreover, HPL provides several functions that are very useful when develop-

ing more complex kernels. For example, some kind of synchronization mechanism

is needed to control the access to shared portions of data when threads have to

read data that other threads have written. This is achieved by means of the HPL

barrier() function, which performs a barrier synchronization among all the threads

in a group. It expects an argument indicating the memory scope, either local (LOCAL)

or global (GLOBAL) or both (LOCAL|GLOBAL), for which a coherent view must be kept

for all the threads after the barrier. The library also supports the definition of inter-

nal HPL functions to be invoked within an HPL kernel. Such invocations must be

done by means of call(). For instance, call(f)(a,b) works as expected, calling

the function f with the arguments a and b. The first time a function is called by

means of call(), HPL internally generates the code for the routine and compiles

1We are aware that the name saxpy no longer makes sense when the data used are no
longersimple-precision elements. We use the same name for the sake of simplifying the example.
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it, subsequent call() occurrences for the same function just invoking it. In turn,

when a plain C++ invocation is done, the code of the routine is generated and then

inlined inside the code of the calling function. This latter way of invocation is only

valid for functions that do not include an HPL return statement.

Such dual behavior of HPL depending on how functions are invoked raises the

issue about how its kernels are translated into a runnable binary for a given device.

This process is transparent for the user and it consists of two separate steps. First,

the kernel is instantiated by running it as a regular C++ code compiled along

with the rest of the host application. The fact that kernels are written in its own

embedded language allows the library to capture aspects of the code such as the

data definitions and manipulations, or the control flow structures, and then use all

the information gathered to build a suitable intermediate representation (IR). In

the second step of the aforementioned process this representation is compiled into a

binary for the target device. The implementation of HPL on top of which the self-

adaptive kernels explained in this chapter are built relies on OpenCL C as IR, the

generated code being thus functionally portable across OpenCL-supported devices.

There are not, however, any restrictions precluding the usage of other IRs as a

back-end. In fact, the just-in-time optimizer described in Chapter 4 translates HPL

kernels into a tree-like IR instead of generating OpenCL C equivalents straightaway.

Since the instantiation of an HPL kernel starts with it being run as a regular

C++ routine, both variables of C++ standard types and code constructs like control

flow structures can appear in the kernel. However, such C++ code fragments do not

appear directly in the kernel IR. Rahter, they work as metaprogramming instructions

that drive the translation process. Self-adaptive kernels are built on top these run-

time code generation capabilities (RTCG) of HPL, which allow to apply different

optimizations and then produce different code versions depending on the device

targeted. The details about how such features can be exploited will be given when

introducing such kernels.

Host interface

The most important component of the host interface is the function eval, which

requests the execution of the kernel f with the syntax eval(f)(...), the argument
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1 void saxpy(Array <float ,1> y, Array <float ,1> x, Float a) {

2 y[idx] = a * x[idx] + y[idx];

3 }

4
5 int main(int argc , char *argv) {

6 float my_y [1000];

7 Float a;

8 Array <float ,1> x(1000) , y(1000, my_y);

9 // myy , myx and a are filled in with data (not shown)

10 eval(saxpy). device(GPU). global (1000). local (10)(y, x, a);

11 }

Listing 3.3: Array usage and workspace configuration on SAXPY running example

f being the kernel. The execution of the kernel can be parametrized by inserting

specifications, in the form of methods, between the eval(f) invocation and the

argument list. Line 10 in Listing 3.3 shows some examples of such methods and how

they are used in the SAXPY HPL code.

One of the properties that can be specified after calling eval() is the config-

uration of the kernel execution domains introduced in Section 3.1.1. Thus, in our

example, by invoking global(1000) a unidimensional global domain of 1000 ele-

ments is set, the further call of local(10) dividing that global domain into local

domains of 10 elements each. When not specified, by default the global size is equal

to the size of the first argument, whereas the local size is automatically selected

by the library. Another property configurable by means of such chained calls is

the execution target device. In our example, device(GPU) orders HPL to run the

kernel on the first GPU available. By default, the library picks the first device in

the system which is not a standard CPU. If no alternative is found, the kernel is

run on the CPU. Moreover, some device management operations are also provided

to allow the user to choose any of the computing devices available.

The SAXPY example from Listing 3.3 also shows in Line 8 how the host arrays

to be passed as kernel arguments can be created. Here, array x is created from

scratch, making the library responsible for allocation and deallocation of its host

memory space. Nevertheless, array y is defined providing a pointer my y to a host

buffer already allocated in Line 6. Thus in this case the library will not allocate any

memory for this array in the host, using instead the one provided. In the devices,

however, the management will be analogous to that of any other array.
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eval(f)(...)
Is there an

IR for f?

Generate it and
store it in cache

Take it
from cache

Is there a
binary for this IR

and device?

Generate it and
store it in cache

Take it
from cache

Transfer
inputs

Run kernel

NO

YES

NO

YES

Figure 3.1: HPL kernel invocation algorithm

The flowchart in Figure 3.1 depicts the sequence of steps performed by the library

when a kernel is invoked for execution. The library keeps an internal cache with

the IRs previously generated, so that this cache is sought first to check whether a

translation for the invoked kernel is already available. If this is not the case, the

kernel is instantiated and the IR is stored in the cache. Once the IR is ready, a

second internal cache is queried to check whether such IR was already compiled into

a binary for the target device. In a similar vein, if there is no binary available, the

IR is compiled and the resulting binary is cached. At this point, HPL transfers to

the device just the data needed for the execution and, finally, the kernel is launched

for execution.

By keeping both IR and binary caches, the instantiations and compilations of the

kernels are minimized, since each kernel is translated into its IR just the first time it

is used, and such IR is compiled into a binary only if it does not exist for the target

device. However, in some situations it could be interesting to regenerate a kernel,

for instance when C++ code constructs are included to exploit the run-time code

generation capabilities of the library. In such cases, users may vary the behavior of

that C++ code in order to generate different versions of a same HPL kernel. This

feature, which is one of the foundations of our self-adaptive kernels approach, is

provided by the reeval() function. It follows the same syntax as eval(), but t

forces the instantiation of a kernel no matter previous versions are available in the

HPL caches or not.

Support for native OpenCL C kernels

The HPL embedded language has both identical semantics and an analogous

syntax to those of C, which reduces the programming effort needed to transform any

OpenCL kernel written in C into an HPL kernel. However, users may prefer to keep
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their original codes instead of translating them, and hence the library provides way to

include native kernels in HPL applications. This mechanism requires users to define a

kernel handle that takes the form of a regular C++ function, and then to associate

it to the native kernel code. This is achieved by means of the nativeHandle()

function, which takes as arguments a pointer to the handle function, a string with

the name of the native kernel function to link and the string containing the OpenCL

source code. Once the link is set, the native code can be invoked for execution by

invoking eval() using the handle as the argument. The saxpy simple SAXPY

OpenCL native kernel is implemented in lines 2-7 of Listing 3.4, the code being

stored in the kernel code string. The handle is defined as the saxpy ocl C++

empty function in line 10. Then, they are linked in line 17 and, finally, the handle

is invoked with eval(saxpy ocl) in line 18, which eventually leads to the native

kernel execution.

1 const char * const kernel_code = TOSTRING(

2 __kernel void saxpy_simple(__global float *y,

3 const __global float *x, const float a)

4 {

5 size_t idx = get_global_id (0);

6 y[idx] = a * x[idx] + y[idx)];

7 }

8 );

9
10 void saxpy_ocl(Array <float ,1> y, In <Array <float ,1>> x, Float a) { }

11
12 int main(int argc , char *argv) {

13 float my_y [1000];

14 Float a;

15 Array <float ,1> x(1000) , y(1000, my_y);

16 // myy , myx and a are filled in with data (not shown)

17 nativeHandle(saxpy_ocl , "saxpy_simple", kernel_code );

18 eval(saxpy_ocl ). device(GPU). global (1000). local (10)(y, x, a);

19 }

Listing 3.4: SAXPY running example using a native kernel
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3.2. Towards performance-portable kernels

By now we have introduced the HPL architecture and its programming basics,

proving also that, since it translates the user-written kernels into OpenCL code,

it provides functional portability on heterogeneous environments. There are some

advanced features of the library, namely its run-time code generation capabilities

(RTCG), that can be exploited to make a single HPL base kernel be able to give

place to different OpenCL versions. Thus, performance portability can be achieved

on top of such HPL kernels if the conditions driving the code generation process

depend to some extent on the properties of the given target device.

The reminder of this Section is organized as follows. First, in Section 3.2.1 we de-

velop another running example to introduce the aforementioned run-time code gen-

eration capabilities, which are used in turn in Section 3.2.2 to program parametrized

HPL kernels. These kernels produce different OpenCL versions depending on the

values set at run-time for a number of parameters. Thus, in Section 3.2.3 we propose

such a parametrized HPL implementation for a set of well-known optimization tech-

niques. Finally, in Section 3.2.4, we recall the search strategies implemented in the

kernel optimization process performed by OCLoptimizer and outline an adaptation

of the genetic algorithm to find optimized combinations of values for the parameters

required by the set of techniques presented.

The combination of HPL kernels implemented using such parametrized optimiza-

tion techniques and a search process able to find suitable values for those parameters

depending on the target device gives place to the concept of performance-portable

self-adaptive kernels.

3.2.1. HPL run-time code generation capabilities

When an HPL kernel is instantiated, it is first run as a regular C++ routine,

which allows to introduce C++ variables and code constructs in it. Regarding the

variables, they will not appear in the resulting IR. Rather, they will be respectively

replaced by constants with their values at the points of the kernel in which they

interact with the HPL embedded language elements. In relation to code constructs

such as computations or control flow structures, they will simply be executed during
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1 int M = ...;

2 int N = ...;

3
4 void mxv(Array <float ,2> a, Array <float ,1> x,

5 Array <float ,1> y, Int n)

6 {

7 Int k;

8 for_(k=0, k<n, k++)

9 y[idx] += (a[idx][k] * x[k]);

10 }

11
12 int main (...) {

13 ...

14 Array <float ,2> a(M,N);

15 Array <float ,1> x(N), y(M);

16 ...

17 eval(mxv). global(M)(a, x, y, N);

18 }

Listing 3.5: MxV code: base version with kernel as a function

the instantiation of the kernel. In this way, they can be used to compute at runtime

values that can become constants in the kernel, to choose among different HPL code

versions to include, or to simplify the generation of repetitive codes.

Let us illustrate these uses by means of another running example, this one imple-

menting a matrix-vector product in HPL. Lines 4-10 of Listing 3.5 contain the base

kernel of this example. Here, each element idx of a global domain of size M computes

the dot product of the idx-th row of the matrix a and the input vector v, accumu-

lating the result in the idx-th component of the output vector y. Any programmer

might want to optimize this base kernel by, for instance, unrolling the dot product

loop of lines 8-9. Several programming issues that can be addressed by means of the

RTCG capabilities of HPL can be considered at this point. First, there is no doubt

that unrolling a loop implies some code rewriting operations. Roughly speaking, the

instruction that updates the loop counter must be adapted, the loop body must be

replicated as many times as the unroll factor indicates, and the occurrences of the

loop counter in each replicated instruction have to be adapted too.

The kernel in Listing 3.6 shows how regular C++ code can be used to enrich the

base HPL kernel and considerably simplify this optimization process. In this new

version, the original dot product loop (lines 8-9 from Listing 3.5) has been modified
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1 int M = ...;

2 int N = ...;

3 int UF = ...;

4 int SMALL_N = ...;

5
6 void mxv(Array <float ,2> a, Array <float ,1> x, Array <float ,1> y)

7 {

8 Int k;

9 if(N >= SMALL_N) {

10 for_(k=0, k<N, k+=UF) {

11 for(int uf=0;uf <UF;uf++) {

12 y[idx] += (a[idx][k+uf] * x[k+uf]);

13 }

14 }

15 }

16 else {

17 for_(k=0, k<N, k++) {

18 y[idx] += (a[idx][k] * x[k]);

19 }

20 }

21 }

Listing 3.6: MxV code: kernel with C++ constructs

(lines 10-14) to make it able to unroll itself with an unroll factor UF. Notice how the

body of the HPL for loop now contains a C++ for (lines 11-13), instead of the

single instruction of the original loop. When an HPL kernel is instantiated, the C++

loops found are just executed. In this example, UF copies of an adapted version of

the single instruction from the original loop body will be generated. The adaptation

consists in adding the uf counter of the regular loop to the k counter of the HPL for

loop. Thus, the occurrences of uf in each copy will be replaced by the corresponding

value in each unrolled version, from k+0 to k+(UF-1). This happens because the uf

counter itself is a C++ variable, and thus its value is captured in each iteration in

the associated copy generated. Furthermore, the instruction updating the counter

of the for of line 10 must be also changed to ensure that the HPL loop advances

in steps of the same length as the unroll factor. As UF is a global C++ variable,

the value set by the user for this variable will be captured or frozen in the IR code

generated by HPL.

Let us assume now that, if the input matrix a has less columns than a given value

SMALL N, the programmer prefers to keep the original version of the kernel rather
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than to unroll the dot product loop. C++ if blocks can be used to manage such

situations. Likewise the regular for loops, if blocks are simply run when a kernel is

instantiated and, therefore, only the code contained into the branch that is executed

will be generated. In our example, the if whose condition is defined in line 9

plays this role. When the matrix a has enough columns, the code in lines 10-14 is

instantiated, otherwise, the original implementation kept in lines 17-19 is processed.

Other details relevant when unrolling a loop, namely the treatment of the remaining

iterations when the total number is not divisible by the factor applied, have been

omitted in this introductory example for the sake of clarity. This issue is covered in

the loop unrolling explanation given in Section 3.2.3.

3.2.2. Programming parametrized HPL kernels

We have just seen how, depending on the values taken by some global variables,

different versions can be generated for the same base HPL kernel. However, even

though those global variables are an effective mechanism for parametrizing the gen-

eration of multiple versions, the way these variables are defined introduces some

inconveniences that hamper the natural flexibility of this programming approach.

By now, all the kernel functions defined were global, which forced the C++ variables

included in the kernels to be defined as global too. This is untidy, as the relation

between the variables and the kernel they parametrize is not obvious. In addition,

as the number of kernels in our application grows, so does the number of different

variables in the global space of the application needed to parametrize them, several

of them having possibly the same meaning, but for different kernels. This clutters

the global space and increases the possibilities of programming errors, besides going

against basic principles of software engineering such as encapsulation. Fortunately,

the object oriented properties of C++ coupled with the large variety of kinds of

kernels supported by HPL provides an easy solution to this problem.

Any class that defines a operator() method is a functor. This operator allows

the objects of such classes to be treated as functions and, furthermore, since they

are also plain C++ classes, state information can be stored in their attributes. This

way, any HPL kernel can be implemented as the operator() method of a class,

and the variables that drive its code generation process can be stored in the class
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properties rather than in the global space as independent variables. Listing 3.7

shows the implementation of the MxV functor class, equivalent to the example kernel

from Listing 3.6. Notice how now the global variables N, UF and SMALL N are defined

as properties of the class (line 4) and the kernel is implemented as the method

operator() of the class (lines 10-25). Moreover, the class should also provide some

getters and setters for its properties, although they have been elided for clarity

(line 8).

1 class MxV

2 {

3 private:

4 int N, UF, SMALL_N;

5
6 public:

7 ...

8 // Getters/setters for properties elided

9 ...

10 void operator ()(Array <float ,2> a, Array <float ,1> x, Array <float ,1> y)

11 {

12 Int k;

13 if(N >= SMALL_N) {

14 for_(k=0, k<N, k+=UF) {

15 for(int uf=0;uf<UF;uf++) {

16 y[idx] += (a[idx][k+uf] * x[k+uf]);

17 }

18 }

19 }

20 else {

21 for_(k=0, k<N, k++) {

22 y[idx] += (a[idx][k] * x[k]);

23 }

24 }

25 }

26 };

27
28 int main (...) {

29 ...

30 int m, n, iuf , small_n;

31 ...

32 Array <float ,2> a(m,n);

33 Array <float ,1> x(m), y(n);

34 ...

35 MxV mxv;

36 mxv.set_N(n);

37 mxv.set_UF(iuf);

38 mxv.set_small_n(small_n );

39 eval(mxv). global(m)(a, x, y);

40 ...

41 mxv.set_UF(<new unroll factor >);

42 reeval(mxv). global(m)(a, x, y);

43 ...

44 }

Listing 3.7: MxV code: functor implementation and usage
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Lines 28 to 44 of Listing 3.7 contain the sketch of an HPL application using

the functor class defined above. First, an object mxv of the MxV functor class is

instantiated (line 35). Then, the setter methods of the class are invoked (lines 36-

38) to store the values contained in the user-defined C++ variables from line 30.

Finally, the HPL kernel implemented inside the functor is launched for execution

by calling eval() in line 39. When the kernel invocation process was explained

in Section 3.1.2, we said that function eval() expects a function implementing an

HPL kernel as argument. As an instance of a functor class, the object mxv can be

treated as a function, which makes it a valid argument for eval(). Thus, the library

will instantiate the HPL kernel contained in the operator() method, reading the

values from the object properties N, UF and SMALL N when needed. In order to try a

version of the same base kernel applying a different unroll factor, first a new value

must be set for the attribute UF (line 41), and then the kernel must be executed with

a call to reeval(), which will give place to a reinstantiation using the new unroll

factor (line 42). This programming mechanism is so flexible that it allows users,

for instance, to write an HPL application able to iterate on a list of unroll factors,

generate a version for each one, and evaluate the performance of the resulting code.

3.2.3. Parametrized optimization techniques

Some parametrized optimization techniques that exploit the RTCG capabilities

of HPL are now proposed following the explanations in Sections 3.2.1 and 3.2.2.

These techniques can be used to build self-optimizing kernels able to: (1) unroll one

or several loops using a given unroll factor, (2) apply the tiling technique to one or

several loops using a given tile size, (3) select the best granularity of the computation

performed by each instance of the kernel, (4) select the most suitable variant of an

algorithm depending on the target device, (5) decide which data structures are stored

in local memory, (6) select an optimized loop order, and (7) choose an optimized

vector size in the vectorized portions of code. These techniques will be illustrated

using a functor implementation of the base kernel of our matrix-vector running

example. Such implementation is recalled in Listing 3.8.
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1 class MxV {

2 void operator ()(Array <float ,2> a, Array <float ,1> x,

3 Array <float ,1> y)

4 {

5 Int k;

6 for_(k=0, k<N, k++)

7 y[idx] += (a[idx][k] * x[k]);

8 }

9 };

10 int main (...) {

11 ...

12 MxV mxv;

13 eval(mxv). global(M)(av , xv , yv);

14 }

Listing 3.8: MxV code: base version as a functor

Loop unrolling

Loop unrolling is a well-known optimization technique whose main benefits are

that it unveils instruction level parallelism, minimizes branch penalty and reduces

the number of control instructions executed. Loop unrolling using arbitrary unroll

factors can be introduced in HPL kernels using RTCG. C++ code will be used in

conjunction with the HPL embedded language to generate the unrolled loops. Let

us see an example starting from the matrix-vector product (MxV) code shown in

Listing 3.8. This code defines the HPL kernel in lines 2-8. Each instance of the

kernel processes one row from the input matrix, thus a single loop is required to

multiply each element of the row by the corresponding element of the input vector.

Listing 3.9 shows an unrolled version of the kernel. The loop in lines 6-9 is an

unrolled version of the original loop, thus, its stride is now the unroll factor (uf).

The body of the loop is replicated uf times by a native C++ loop (lines 7-8). As

the number of iterations of the loop N may not be a multiple of uf, the loop limit

is set to N-uf in order to prevent out of range array accesses. If there are iterations

left after that loop, they are processed without unrolling by the code in lines 10-11.

The value for the unroll factor is provided to the kernel from the main procedure

by setting the appropriate attribute of the class that defines the kernel (line 17).
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1 class MxV { //Other portions of the class have been elided

2 void operator ()(Array <float ,2> a, Array <float ,1> x,

3 Array <float ,1> y)

4 {

5 Int k;

6 for_(k=0, k <= (N - uf), k += uf) {

7 for(aux =0; aux <uf; aux++)

8 y[idx] += (a[idx][k+aux] * x[k+aux]);

9 }

10 for_(k,k<N,k++)

11 y[idx] += (a[idx][k] * x[k]);

12 }

13 }

14 int main (...) {

15 ...

16 MxV mxv;

17 mxv.set_uf(unrolling_factor );

18 eval(mxv). global(M)(av , xv , yv);

19 }

Listing 3.9: MxV code: unrolled version

Loop tiling

An adequate exploitation of the memory hierarchy available is a determining

factor when trying to make a code perform well on multiple heterogeneous devices.

Loop tiling is a generic programming technique extensively applied to improve such

exploitation. Instead of keeping the loops iterating on the full dimensions of the

structures, this transformation breaks the iteration spaces of such loops into smaller

tiles. As a result, these structures will be accessed using smaller blocks which are

more likely to fit into upper memory hierarchy levels, thus increasing data reuses

and lowering data miss rates. Finding an optimized tile size for each situation is

the main issue in the application of this technique. Moreover, an adequate selection

of this size could lead into a very propitious scenario for applying either unroll or

vectorization techniques or both of them in a later step. These combinations of code

transformations may maximize the performance of a kernel not only by improving

the use of memory hierarchy, but also by increasing the number of independent in-

structions available to be executed and vectorizing them. The code in Listing 3.10

applies this transformation for a generic tile size to the matrix-vector multiplica-

tion example. The original single loop iterating on the whole dimension N with step
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1 class MxV { // Other portions of the class have been elided

2 void operator ()(Array <float ,2> a, Array <float ,1> x,

3 Array <float ,1> y)

4 {

5 Int kk ,k,klim;

6 for_(kk=0,kk<N,kk+= tile_size ){

7 klim = kk + tile_size;

8 if_(klim >= N) klim = N;

9 for_(k=kk,k<klim ,k++){

10 y[idx] += (a[idx][k] * x[k]);

11 }

12 }

13 }

14 };

15 int main (...) {

16 ...

17 MxV matvec;

18 matvec.set_tW(tile_size );

19 eval(matvec ). global(M)(av , xv , yv);

20 }

Listing 3.10: MxV code: tiled version

1 (see lines 6-7 in Listing 3.8) is replaced with two nested loops: the outermost one

(lines 6-12) iterates on N in chunks of size tile size, whereas the innermost one

(lines 9-11) does it on the corresponding tile in an element-wise way. Notice how

the end limit of this latter loop is defined in order to avoid exceeding the bounds of

the original loop when its size N is not divisible by the selected tile size (lines 7-8).

Granularity adjustment

HPL creates one instance (or thread in HPL terminology) of the kernel for each

point of the global domain. The amount of work performed by each thread must

be tuned for each platform in order to maximize performance. For example, CPUs

tend to be more effective using threads with larger workloads than GPUs. It is

interesting to be able to tune that granularity at run-time depending on the type of

device we are using. We can do that in HPL by changing the number of points in

the global domain. For example, in our MxV code the number of threads created

is equal to the number of rows of the input matrix, thus, each thread processes one

row of this matrix. If we reduce the number of threads, each thread should process
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1 class MxV { //Other portions of the class have been elided

2 void operator ()(Array <float ,2> a, Array <float ,1> x,

3 Array <float ,1> y)

4 {

5 Int ii , i, ilim , k;

6 for_(ii = idx*bszx , ii < M, ii += szx*bszx)

7 for_(i = ii ,i < min(xx+bszx , M), i++)

8 for_(k = 0, k < N, k++)

9 y[i] += a[i][k] * x[k];

10 }

11 }

12 int main (...) {

13 ...

14 int szx = <# threads of the global domain >;

15 int bszx = <block size >;

16 ...

17 eval(mxv). device(dev). global(sz_x)(av , xv , yv);

18 }

Listing 3.11: MxV code: auto-adjustable granularity version

several rows from the input matrix. In this technique, the adaptability of the code

stems from the fact that the code is written in a generic way, based on the value of

a set of optimization parameters. Thus, the code has to be rewritten for a generic

grain size, the grain size being in this case the number of rows of the input matrix

processed by each thread. In our proposal, rows are distributed using a block-cyclic

policy, thus, grains of bszx rows are assigned cyclically to the available threads. An

optimized value of bszx should be later found for each device. In the MxV code, this

block size will not have a big influence in the performance, but in other problems

some values of bsz may benefit locality or coalescing, and as a result, they will have

a big impact in the performance.

In order to implement this distribution of the rows, the MxV kernel code must

be changed to add two outer loops that process the blocks of bszx rows assigned to

each thread. The loop headers in lines 6-7 of Listing 3.11 select the appropriate set

of rows to be processed by each thread following a block-cyclic policy. The resulting

kernel is written in a generic way, so that if different values are provided for the size

of the global domain and the block size, the granularity of the work performed by

each thread is automatically adjusted at run-time.
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Algorithm variant selection

Programmers may need to implement different versions of an algorithm or, at

least, adapt the implementation of some of its steps depending on the features of the

target device. For instance, a version that exploits local memory is good for GPUs,

but it may introduce unnecessary synchronization points in CPUs. Similarly, the

best strategy to divide work among the participating threads also varies depending

on the type of device. These two examples show how properties such as the type of

device and the multiple architectural details usually drive these decisions.

By means of the RTCG capabilities of HPL, any native C++ alternative struc-

ture will provide the support for this feature. First, the algorithm variants must be

distributed among the branches of the alternative structure, and then, the conditions

driving the selection must be included where the native control structure expects

them. Moreover, thanks to the nature of HPL, the conditions that choose among

the code blocks can evaluable either at compile time or dynamically at runtime

Listing 3.12 shows the skeleton of a MxV vector kernel where a different variant

of the algorithm would be selected depending on the type of device, which is a

property that can be queried at runtime. Notice the native C++ if-else structure

in lines 5-9 is supporting here the selection mechanism, which will generate one or

another implementation depending on the evaluation of the condition set in line 5.

1 class MxV { // Other portions of the class have been elided

2 void operator ()(Array <float ,2> a, Array <float ,1> x,

3 Array <float ,1> y)

4 {

5 if (device ==GPU) {

6 // Version better suited to GPUs

7 } else {

8 // Default version for CPUs and other devices

9 }

10 }

11 }

Listing 3.12: MxV code: algorithm version selection
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Memory region selection

By default, any memory structure manipulated by an HPL kernel must be avail-

able in the global memory of the target device. Nevertheless, there are performance

issues that may make advisable to copy a structure, either sliced or as a whole, to

other memories of the device. In GPUs, for instance, the threads in a group share

a local memory on which the global memory structures are often cached. More-

over, sometimes it is interesting to exploit the registers of a processor by copying

blocks of data to the private memory they belong to, and then performing the com-

putations directly on this memory. This latter optimization is usually applied on

CPUs, but it can be also exploited in GPUs, which leads to the combination of both.

Thus, such programming variations motivate the implementation of a mechanism to

dynamically select the region in which a data structure must be stored.

This selection mechanism, which is a use case of the algorithm variant selection

just introduced, is supported by two main code transformations. First, code to

copy the structure to a buffer allocated in the desired memory region must be

generated. In the MxV example, the kernel is written in such a way that we can

choose between storing vector x in local memory or keeping in global memory. A

1 class MxV { //Other portions of the class have been elided

2 void operator ()(Array <float ,2> a,

3 Array <float ,1> x, Array <float ,1> y,

4 Array <float ,1,Local > lx)

5 {

6 Int k;

7 if(copyX) {

8 for_(k=lidx , k<N, k+=lszx)

9 lx[k] = x[k];

10 barrier(LOCAL);

11 }

12 for_(k=0, k<N, k++)

13 y[idx]+=a[idx][k]*( copyX ? (Float)lx[k] : (Float)x[k]);

14 }

15 }

16 int main (...) {

17 ...

18 eval(mxv). device(dev). global(M). local(lsz_x)(av ,xv ,yv ,lxv);

19 }

Listing 3.13: MxV code: local memory usage
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boolean parameter copyX will be set in the host to indicate whether we want to

copy that array in local memory. Listing 3.13 contains the MxV kernel modified to

implement this behavior. The kernel uses the run-time code generation capabilities

of HPL to generate code to copy x to local memory only if copyX is activated (lines

7-11). Second, if we have chosen to copy the structure, then all the references to

it must be redirected to its copy in the local memory. In the example, either the

global array x or its local copy will be used depending on the value of the copyX

parameter in line 13. Notice also how the compact in-line notation for a native C++

?: operator has been used to implement this selection.

Loop interchange and instruction scheduling

Loop interchange, when legal, can have a big impact on the performance of a

kernel. For example, it can change the order in which n-dimensional structures are

traversed. Some traversal orders can reduce the number of required simultaneous

registers or favor locality or automatic vectorization detection. Traditionally, the

best loop order is either selected by the programmer or optimized at compile-time.

In HPL, RTCG capabilities can be used to change the loop order at run-time.

The code in Listing 3.14 shows an example of how this technique can be applied

to our matrix-vector product HPL kernel. In the version presented in Listing 3.11

the granularity of the kernel can be adjusted, so that each thread processes the

multiplication of M/szx consecutive rows of matrix a by vector x. The product within

each thread can be done using the traditional order, where matrix a is accessed by

rows, or it can be done by traversing per columns the chunk of M/szx rows of a

processed by each thread. This order can be changed by swapping the two loops in

the kernel. In HPL, this code transformation can be done at run-time using a new

technique based on indirections. Arrays init, end and step have one position per

loop (2 in the example) containing the initialization, limit and step of the counters

of each one of the actual loops that we want to reorder. This way, we call actual

loop j the one whose data is stored in the j-th position of these vectors. The loops

with indices c[0] and c[1] are just container loops where the real loops are placed.

The loop order can be changed modifying the contents of the arrays ord and ptr.

This way, the number of the actual loop j to be implemented by the container

loop, i, with index c[i] is stored in ord[i]. Also, the references inside the loops
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1 class MxV { // Other portions of the class have been elided

2 int init [2]={0 ,0}; int end [2]={M/szx ,N}; int step [2]={1 ,1};

3 int ord[2], ptr [2]; // initialized by set_order

4 void operator ()(Array <float , 2> a, Array <float , 1> x,

5 Array <float , 1> y)

6 {

7 ...

8 Array <int , 1, Private > c(2);

9 for_(c[0]= init[ord[0]],c[0]<end[ord[0]],c[0]+= step[ord [0]]) {

10 for_(c[1]= init[ord[1]],c[1]<end[ord[1]],c[1]+= step[ord [1]]) {

11 y[idx*(M/szx)+c[ptr [0]]] +=

12 a[idx*(M/szx)+c[ptr [0]]][c[ptr [1]]] * x[c[ptr [1]]];

13 }

14 }

15 }

16 };

17
18 int main (...) {

19 ...

20 MxV mxv;

21 mxv.set_order (0,1); // sets ord [0]=1 and ptr[ord [0]]= ptr [1]=0

22 mxv.set_order (1,0); // sets ord [1]=0 and ptr[ord [1]]= ptr [0]=1

23 eval(mxv). global(sz_x)(av , xv , yv);

24 }

Listing 3.14: MxV code: version with interchangeable loops

have indexing functions that depend on the indices of the container loops, c[i].

Each ptr[j] contains the index of vector c that implements the actual loop j, that

is, whenever ord[i]=j, then ptr[j]=i. This way, any reference to the indexing

variable of the actual loop j in the original code can be systematically replaced by

c[ptr[j]], ensuring that the appropriate loop index will be used no matter which

is the loop ordering chosen.

Recalling the example from Listing 3.14, the instruction in line 21 requests that

the container loop 0 (c[0]) implements the actual loop 1 (ord[0]=1). Similarly, the

instruction in line 22 configures the container loop 1 (c[1]) so that it implements

the actual loop 0, (ord[1]=0). Regarding the ptr array, ptr[ord[0]], which is

ptr[1] in this order, points to the index of container c[0], and ptr[ord[1]],

which is ptr[0] in this order, points to the index of c[1]. These values command

HPL to generate a kernel like the mxv loopinter col one in Listing 3.15, which

performs an access per columns. In turn, when the arrays ord and ptr are set to
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their complementary values, the kernel generated is like the mxv loopinter row one

shown in Listing 3.16, which performs an access per rows. Notice how the order of the

loops and the occurrences of the counters (lines 7-9 of both listings) are exchanged

among both kernels. This scheme can be generalized for any arbitrary number of

loops. Notice that some loop exchanges may be illegal. Thus, the programmer is

responsible for checking the legality of the orders tried or at least, for enumerating

the set of legal orderings.

The loops exchanged in the example are HPL for loops (lines 9-10), thus they

give place to for loops when they are translated into OpenCL code. If in this exam-

ple C++ for loops were used instead of for loops, these loops would be executed

during the HPL code generation process, which would give place to a fully unrolled

1 __kernel void mxv_loopinter_col(__global float *a, __global float *x,

2 __global float *y)

3 {

4 size_t szx = get_global_size (0);

5 size_t idx = get_global_id (0);

6 __private int c[2];

7 for((c[0]=0); (c[0]<N); (c[0]+=1)) {

8 for((c[1]=0); (c[1]<M/szx); (c[1]+=1)) {

9 y[((idx*(M/szx ))+c[1])]+=(a[((idx*(M/szx))+c[1])*N+c[0]]*x[c[0]]);

10 }

11 }

12 }

13
14 __kernel void mxv_sched_col(__global float *a, __global float *x,

15 __global float *y)

16 {

17 size_t szx = get_global_size (0);

18 size_t idx = get_global_id (0);

19
20 y[((idx*(M/szx ))+0)]+=(a[((idx*(M/szx ))+0)*N+0]*x[0]);

21 y[((idx*(M/szx ))+1)]+=(a[((idx*(M/szx ))+1)*N+0]*x[0]);

22 ...

23 y[((idx*(M/szx ))+((M/szx ) -1))]+=(a[((idx*(M/szx ))+((M/szx )-1))*N+0]*x[0]);

24
25 y[((idx*(M/szx ))+0)]+=(a[((idx*(M/szx ))+0)*N+1]*x[1]));

26 y[((idx*(M/szx ))+1)]+=(a[((idx*(M/szx ))+1)*N+1]*x[1]));

27 ...

28 y[((idx*(M/szx ))+((M/szx ) -1))]+=(a[((idx*(M/szx ))+((M/szx )-1))*N+1]*x[1]);

29
30 ...

31
32 y[((idx*(M/szx ))+0)]+=(a[((idx*(M/szx ))+0)*N+(N-1)]*x[(N -1)]);

33 y[((idx*(M/szx ))+1)]+=(a[((idx*(M/szx ))+1)*N+(N-1)]*x[(N -1)]);

34 ...

35 y[((idx*(M/szx ))+((M/szx ) -1))]+=(a[((idx*(M/szx ))+((M/szx )-1))*N+(N -1)]*x[(N -1)]);

36 }

Listing 3.15: MxV code: OpenCL kernels with loops in column-major order
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version of the original loop nest. In addition array c should be transformed into

a native C++ array. In this case, the loop exchange technique would turn into a

instruction scheduling technique, as different loop orders give place to a different

order of the same sequence of instructions. The OpenCL kernels mxv sched col

and mxv sched row from Listings 3.15 and 3.16 show the generic schedules for ar-

bitrary M and N sizes derived from unrolling the column-major and row-major loop

nests, respectively. This instruction scheduling technique is applied on top of a loop

reordering mechanism in our matrix multiplication implementation, which will be

introduced in Section 3.3.1.

1 __kernel void mxv_loopinter_row(__global float *a, __global float *x,

2 __global float *y)

3 {

4 size_t szx = get_global_size (0);

5 size_t idx = get_global_id (0);

6 __private int c[2];

7 for((c[0]=0); (c[0]<M/szx); (c[0]+=1)) {

8 for((c[1]=0); (c[1]<N); (c[1]+=1)) {

9 y[((idx*(M/szx ))+c[0])]+=(a[((idx*(N/szx))+c[0])*N+c[1]]*x[c[1]]);

10 }

11 }

12 }

13
14 __kernel void mxv_sched_row(__global float *a, __global float *x,

15 __global float *y)

16 {

17 size_t szx = get_global_size (0);

18 size_t idx = get_global_id (0);

19
20 y[((idx*(M/szx ))+0)]+=(a[((idx*(M/szx ))+0)*N+0]*x[0]);

21 y[((idx*(M/szx ))+0)]+=(a[((idx*(M/szx ))+0)*N+1]*x[1]);

22 ...

23 y[((idx*(M/szx ))+0)]+=(a[((idx*(M/szx ))+0)*N+(N-1)]*x[N-1]);

24
25 y[((idx*(M/szx ))+1)]+=(a[((idx*(M/szx ))+1)*N+0]*x[0]);

26 y[((idx*(M/szx ))+1)]+=(a[((idx*(M/szx ))+1)*N+1]*x[1]);

27 ...

28 y[((idx*(M/szx ))+1)]+=(a[((idx*(M/szx ))+1)*N+(N-1)]*x[N-1]);

29
30 ...

31
32 y[((idx*(M/szx ))+((M/szx ) -1))]+=(a[((idx*(M/szx ))+((M/szx )-1))*N+0]*x[0]);

33 y[((idx*(M/szx ))+((M/szx ) -1))]+=(a[((idx*(M/szx ))+((M/szx )-1))*N+1]*x[1]);

34 ...

35 y[((idx*(M/szx ))+((M/szx ) -1))]+=(a[((idx*(M/szx ))+((M/szx )-1))*N+(N -1)]*x[N-1]);

36 }

Listing 3.16: MxV code: OpenCL kernels with loops in row-major order
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Vectorization

When vector instruction are used in a code, selecting the appropriate vector size

for them for each architecture is very relevant in terms of performance. HPL allows

to rewrite at run-time a vectorized kernel using arbitrary vector sizes. This feature

is accomplished by combining C++ templating and the AliasArray HPL data type,

which allows to access an existing HPL Array made up of scalars using either scalar

or vector data types.

The code in Listing 3.17 is a vectorized version of the grain-adjustable matrix-

vector product from Listing 3.11, but it uses a generic vector type vectype. With

this purpose, the HPL kernel in lines 1-20 is templated for this vectype. On the host

side, the MxV class is properly instantiated using the desired vector type (line 23). On

the kernel side, matrix a and vector x are wrapped in lines 6-7 using the AliasArray

class provided by HPL, which allows to access them using vector types of the de-

1 template <typename vectype >

2 class MxV { // Other portions of the class have been elided

3 void operator ()(Array <float ,2> a, Array <float ,1> x,

4 Array <float ,1> y)

5 {

6 AliasArray <vectype , 2> a_vec(a[0][0]);

7 AliasArray <vectype , 1> x_vec(x[0]);

8 Array <vectype , 0> tmp;

9 Int k;

10
11 for_(i=0, i<(M/szx), i++) {

12 for_(k=0, k<=(N/vectype :: veclen), k++){

13 tmp += (a_vec[idx*(M/szx)+i][k] * x_vec[k]);

14 }

15 for_(k=0, k<vectype ::veclen , k++){

16 y[idx*(M/szx)+i] += tmp[k];

17 }

18 }

19 }

20 };

21 int main (...) {

22 ...

23 MxV <vectype > mxv;

24 eval(mxv). global(M)(av , xv , yv);

25 }

Listing 3.17: MxV code: vectorized version
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sired size. The loop in lines 12-14 is a vectorized version of the inner loop of the

original version of the algorithm. This loop generates a resulting vector tmp with

vectype::veclen positions. Finally, the values of tmp are accumulated in the po-

sition y[idx*(M/szx)+i] by the loop in lines 15-17.

3.2.4. Outlining a search process for the parameters

The parametrized optimization techniques just introduced are the building blocks

of our self-adaptive HPL kernels. Thanks to the run-time code generation capabil-

ities of HPL, any kernel written by combining these blocks can be translated into

multiple OpenCL versions depending on the values given to the parameters of each

technique applied. Therefore, any algorithm devoted to finding an optimized set of

values for these parameters will also lead to an optimized OpenCL implementation

of the original HPL kernel.

The fundamentals of both breadth-first search (BFS) and genetic algorithms

(GA), and how these strategies could be applied to generate optimized versions of

an input code, were introduced in Section 2.3.2. Unsurprisingly, the BFS approach

turned out to be a very time-consuming option. Nevertheless, a genetic algorithm

designed in a similar vein to that used in OCLoptimizer could be an interesting

alternative to find an optimized combination of values for the parameters driving

a self-adaptive HPL kernel. Thus, generally, each parameter introduced by each

optimization technique will be a gene, all these genes being combined into the chro-

mosome of each individual. By setting different values for these genes, different

individuals can be generated, each individual eventually producing a different ver-

sion of the kernel. Other operating aspects such as the fitness function used to

evaluate the individuals, the termination condition of the algorithm, or the valid

ranges that the values of each gene can take, may vary depending on the particu-

lar properties of each case, such as the problem implemented by the kernel or the

capabilities of the target device.
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3.3. Case Study: Matrix Multiplication

Matrix multiplication is a common time-consuming operation that is imple-

mented by a wide range of parallel libraries. As it is an extensively studied and

important problem, we have generated a highly optimized HPL implementation

of this algorithm. Our implementation has several parameters that can be tuned

through a genetic search guided by the kernel execution time.

Our performance-portable HPL kernel implements the operation C = A × B.

The code has been written in such a generic way that either A or B or both can be

either directly loaded in private memory from global memory, or previously copied

to local memory to optimize these further loads into private memory. Moreover,

thanks to the aforementioned RTCG capabilities of HPL, it is possible to select the

most appropriate combination of usage for both kinds of memory depending on the

device selected at run-time. In addition, the granularity of the work to be performed

by each thread can be adjusted by changing the global domain size. The size of

the local domain can be changed depending on the capabilities of the device, and,

within each thread, the tiling technique is applied. Moreover, the inner loops of the

algorithm are fully unrolled and the instructions are reordered using the instructions

scheduling technique, and then this inner code is vectorized for a generic vector type

that can be configured at run-time. All these optimizations give place to a set of

parameters that can be tuned for each device at runtime.

The rest of this section is organized as follows. First, the parametrized algorithm

that our HPL matrix multiplication kernel implements is described in Section 3.3.1.

Then, Section 3.3.2 explains how a genetic search has been used to find the best

values for the parameters of our algorithm in each device.

3.3.1. Kernel implementation

The implementation of our kernel relies on a number of tunable parameters that

will be introduced during the explanation and which are summarized in Table 3.2

for ease of reference. As explained in Section 3.1, the first two elements in the

table are the standard HPL variables that provide the size of the global domain,

which describes the total number of threads that execute the kernel in parallel, in
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Name Description

szy # of rows of global domain
szx # of columns of global domain
lszy # of rows of local domain
lszx # of columns of local domain
bszy # of rows of each block of C calculated by one thread
bszx # of columns of each block of C calculated by one thread
tW Tile width to distribute the work among work groups
uf Unroll factor to be applied over the tile width loop
copyA Local memory copy flag for matrix A
copyB Local memory copy flag for matrix B
vA Vector size for copying matrix A from global to local memory
vB Vector size for copying and/or manipulation of matrix B
vC Vector size for copying and/or manipulation of matrix C
order Order of the three innermost nested loops

Table 3.2: Parameters of the matrix multiplication algorithm

the second (szy) and the first dimension (szx). Similarly, the next two items in

the table describe the corresponding dimensions of the local domain, which provide

the size of the groups of threads, or work-groups following OpenCL terminology. In

our kernel the domains are associated to the dimensions of the destination matrix,

and as we can see from the description in Table 3.2, its rows are distributed across

the second dimension of the domain, while the columns are mapped on the first

dimension.

Figure 3.2 shows how the work is partitioned in tiles across the threads and

how global, local and private memory regions are used. The top part, Figure 3.2.a,

shows that each thread calculates a tile of bszy × bszx elements of the resulting

matrix C by multiplying bszy rows of matrix A and bszx columns of matrix B. The

tiling technique is also applied to the work to be performed in this computation.

The shared dimension of matrices A and B (the columns of A and the rows of B)

is partitioned into tiles of size tW. The local memory shared among the threads of

the same group can be used to accelerate data loading. Figure 3.2.b shows how a

tile of lszx × bszy rows and tW columns of matrix A is loaded into local memory

collaboratively by the threads of the same group. Using the same method, a tile of

tW rows and lszy × bszx columns of matrix B can be loaded into local memory. Let

us notice that the dimensions of the block size and the local size are crossed. This

combination consistently delivers better performance than its complementary, and
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Figure 3.2: Matrix multiplication generic algorithm

more natural, alternative. The information of matrices A and B is loaded vectorially

using vectors of size vA and vB, respectively. Once this information is collaboratively

loaded into local memory, each thread calculates its tile of the resulting matrix C.
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This is a good point to introduce the parameters in Table 3.2 related to vectorization.

The values vA, vB and vC define the vector size used to move data from A and B,

and to C, respectively. The two latter ones, vB and vC, are also used to define the

lengths of the vectors used in the innermost loops that perform the computation.

Figure 3.2.c.1 shows that matrix A is loaded into private memory in tiles of bszy

× uf elements and matrix B in tiles of uf × bszx elements. Figure 3.2.c.2 shows

that these tiles are multiplied vectorially. At tile level, the innermost loop iterates

on the N/tW tiles of size bszy × tW in which the set of bszy rows of A assigned to

the thread can be partitioned, multiplying each one of them by the same tile of tW

× bszx elements of B. Similarly, the product of bszy complete rows of A and bszx

complete columns of B that is required to calculate a complete tile of bszy × bszx

elements of C is processed across different iterations of another outer loop.

Notice that each input matrix can be loaded into local memory prior to having it

copied into private memory. The usage of local memory theoretically accelerates the

loading of the matrices. However, in some architectures there may not be enough

local memory or its usage can slow down the application [98, 99]. For this reason,

the local memory can be bypassed, in which case data will be directly loaded from

global to private memory. For each architecture, local memory can be used for

loading both, one, or none of the input matrices. This is selected by the parameters

copyA and copyB in Table 3.2. Namely, they determine whether matrices A and/or

B have to be copied first to local memory or directly to private memory. For each

matrix, the corresponding flag can take values either of 0, when no data is going

to be copied to local memory, or 1 or 2, otherwise. In this two latter cases, when

the flag takes the value 1 our kernel implementation will try to allocate exactly the

local memory space needed to store tiles of A of size (lszx × bszy) × tW or tiles

of B of size tW × (lszy × bszx). If the flag takes the value 2, it tries to allocate

space for an additional column for each tile in order to avoid possible bank conflicts.

The pseudo-code in Listing 3.18 shows a simplified version of the algorithm followed

by each thread to calculate a complete bszy × bszx tile of C. For simplicity, this

algorithm assumes that the local memory is used as a gateway between global and

private memory and that vector lengths vB and vC are equal. The local variables to

load a (lszx × bszy) × tW tile of A and a tW × (lszy × bszx) tile of B are declared

in lines 3 and 6. Lines 9 and 11 declare the private variables to load bszy × uf

elements of A and uf × bszx elements of B. Finally, the private variable c where
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1 // Local submatrix of A

2 lA_sz = lszx*bszy; // Rows of local submatrix of A

3 local float localA[lA_sz ][tW];

4 // Local submatrix of B

5 lB_sz = lszy*bszx; // Columns of local submatrix of B

6 local float localB[tW][lB_sz ];

7
8 // Private submatrix of A

9 private float a[bszy][uf];

10 // Private submatrix of B

11 private float <vB > b[uf][bszx/vB];

12 // Private submatrix of C

13 private float <vC > c[bszy][bszx/vC];

14
15 A_gp = gidx*lA_sz; // First row in A for group (gidx ,gidy)

16 B_gp = gidy*lB_sz; // First column in B for group (gidx ,gidy)

17 lA_pos = lidx*bszy; // First row in localA

18 lB_pos = lidy*bszx; // First column in localB

19
20 for_(t=0, t<N, t+=tW){ // foreach tile of width tW in N

21 // Collaborative copies of A and B to local memory

22 localA [0: lA_sz ][0:tW] <- A[A_gp:A_gp+lA_sz][t:t+tW]

23 localB [0:tW][0: lB_sz] <- B[t:t+tW][B_gp:B_gp+lB_sz]

24 barrier (); // Group barrier

25 for_(tt=0, tt <tW , tt+=uf){ // foreach tile of width uf in tW

26 b[0:uf][0: bszx] <- localB[tt:tt+uf][ lB_pos:lB_pos+bszx]

27 a[0: bszy ][0:uf] <- localA[lA_pos:lA_pos+bszy][tt:tt+uf]

28 // Vectorized product of a and b private memory slices

29 for(i=0; i<bszy; i++){ // loop 0

30 for(j=0; j<bszx/vC; j++){ // loop 1

31 for(k=0; k<uf; k++){ // loop 2

32 c[i][j] += a[i][k] * b[k][j];

33 }}}

34 }

35 barrier (); // Group barrier

36 }

37
38 C_row=gidx*lA_pos; // First row in C for a block

39 C_col=gidy*lB_pos; // First column in C for a block

40 C[C_row:C_row+bszy][C_col:C_col+bszx] <- c[0: bszy ][0: bszx]

Listing 3.18: Calculation of a single block of C using local memory

the resulting bszy × bszx tile of C is stored is declared in line 13. Notice that each

element of arrays b and c is a vector of size vB and vC, respectively. This enables

vectorization when the multiplication is done.
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Lines from 15 to 18 calculate the first position in A and B accessed for a given

group, and the first position in localA and localB accessed by a given thread,

respectively. Here it is important to explain that the tuple (gidx,gidy) corresponds

to HPL predefined variables that provide the identifier of the thread group to which

the current thread belongs in the first and the second dimensions of the domain,

respectively. The loop between lines 20 and 36 iterates on each tile of size tW in

the common dimension of A and B. Inside this loop, the corresponding slices of A

and B are collaboratively copied by the threads of the same group into their local

counterparts, localA and localB (see lines 22 and 23). The local barrier in line 24

waits until every member of the group has completed its part of this copy. Then,

the inner loop between lines 25 and 34 iterates on subtiles of size uf within each

tile of width tW. Lines 26 and 27 transfer the appropriate subtiles from localA and

localB to their private counterparts, a and b, respectively.

The three innermost nested loops in lines 29 to 33 perform the multiplication

of a subtile of bszy × uf elements of a by another subtile of bszy× bszx elements

of b using vector types. The result is stored in a private matrix c. These three

loops are native C++ for loops, thus, they will be fully unrolled at run-time. In

our implementation, these loops can be also dynamically reordered, according to

the order parameter in Table 3.2, which is a vector of three elements that encodes

the selected order. Once a thread has completed the calculation of its tile of C, the

instruction in line 40 copies back the resulting matrix from the private copy in c to

the appropriate positions of the global matrix C.

3.3.2. Genetic search of the kernel parameters

In Section 3.2.4 we outlined how a genetic search process could be applied to

find an optimized version of a self-adaptive HPL kernel. That outline is extended

here in order to particularize the algorithm for the current matrix multiplication

case use. Therefore, in this case we are going to tune the values for the parameters

summarized in Table 3.2 by means of a genetic algorithm. Thus, the individuals of

the population represent different versions of the matrix multiplication self-adaptive

kernel, and each gene in the chromosome of an individual represents a parameter

from the aforementioned Table 3.2. The initial population is generated randomly and
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individuals for the subsequent generations are the result of the known reproduction,

crossover and mutation techniques. The fitness function to maximize is defined in

terms of the inverse of the execution time of a kernel. This time is obtained by

running each version three times and getting the average kernel time. The algorithm

stops after five iterations without finding any kernel improving the fastest one ever

found. When this happens, that kernel is returned as the most optimized version.

Regarding the values that the genes of each individual can take, they have to

match certain mandatory conditions. These constraints, which are summarized in

Table 3.3, are derived from restrictions imposed by HPL, the matrix multiplication

algorithm, or the properties of the target device, and the violation of any of them will

lead to the generation of an illegal version of the kernel. For example, HPL restricts

the local size to be not greater than the global size, whereas the algorithm used to

implement the matrix multiplication requires the tile width tW to be not greater

than the common dimension N of matrices A and B. In addition, the device must

have enough free memory space to perform the multiplication, and this restriction

is directly related to the selected sizes for the global and the local domains and tile

width, among other parameters. Other situations prevented by these conditions are,

for instance, the definition of too large workspaces that can generate too many idle

threads, or the selection of vector sizes or unroll factors that are incompatible with

the block size, the tile size or the problem size. Thus, any operation of the algorithm

involved in both random generation and mating reproduction of new individuals is

refined to check first whether the parameters match these conditions. If this is not

the case, the individual is discarded.

These conditions also introduce strong dependences among the optimization pa-

rameters of the matrix multiplication, which considerably restricts the ranges of valid

values that they can take. This may seem a troublesome issue, since it increases the

probability that a generated individual is not valid. However, this inconvenience

ends up being an advantage. Table 3.2 shows that we are tuning 14 parameters, a

number large enough to lead to a combinatorial explosion in a worst-case scenario.

Thus, these restrictions contribute to reduce a considerably wide search space, which

results in a more effective search process. Still, further tests revealed that it was ad-

visable to set additional conditions in order to narrow the search space even further.

Namely, these conditions intend to keep the values of some parameters within ranges



3.4 Experimental results 117

Condition Explanation

szy ≤ P
Global workspace is not greater than C matrix

szx ≤M
lszx ≤ szx

Local workgroups fit into global workspace
lszy ≤ szy
tW ≤ N Tile width for row-column product loop not greater than N

uf ≤ tW Unroll factor over tile not greater than tW

vA ≤ tW Vector size for row-column product loop not greater than tW

vB ≤ bszx
Vectors used to manipulate B and C are not greater than bszx

vC ≤ bszx
sizeof(A)

Enough free space in global memory for matrices A, B and C
+ sizeof(B)

+ sizeof(C)

≤ g mem avail

sizeof(localA)
Enough space in local memory for slices localA and localB+ sizeof(localB)

≤ l mem avail

Table 3.3: Minimum conditions of validity for GA individuals

that have heuristically shown to contain well-performing solutions to our problem,

which helps to both reach better versions as well as to reduce the search time. The

mutation of newborn individuals is implemented also with the intention of leading

the search process to such solutions. In detail, both dimensions of the global domain

have been limited to a minimum size of 128 when the algorithm is run in GPUs,

and to a minimum size of 64 otherwise. These heuristic conditions are added to the

mandatory conditions shown in Table 3.3 and they are also taken into account to

qualify an individual as valid.

Finally, just like in OCLoptimizer, the genetic search implemented in this use

case is also built on top of the GAlib genetic algorithm package [118].

3.4. Experimental results

In this section the performance and the search time of our adaptive implemen-

tation of the matrix multiplication is evaluated for different problem sizes, and

compared with other approaches, in four very different platforms:
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CPU: A dual-socket system with two Intel Xeon E5-2660 Sandy Bridge with

eight 2.2Ghz cores and Hyper-Threading (8 × 2 threads per processor, for

a total of 32) and 64 GB of RAM. Intel OpenCL driver version 1.2-4.5.0.8.

Single-precision theoretical peak performance of 563 GFLOPS.

Nvidia: An NVIDIA Tesla K20m with Kepler GPU architecture and 5 GB

GDDR5. NVIDIA OpenCL driver version 340.58. Single-precision theoretical

peak performance of 3524 GFLOPS.

AMD: An AMD FirePro S9150 with Hawaii GPU architecture and 16 GB

GDDR5. AMD OpenCL driver version 1702.3. Single-precision theoretical

peak performance of 5070 GFLOPS.

Accelerator: An Intel Xeon Phi 5110P with sixty 1.053GHz cores with 8 GB

of RAM. Intel OpenCL driver version 1.2-4.5.0.8. Single-precision theoretical

peak performance of 2022 GFLOPS.

The test performs the multiplication of two square matrices of single-precision

floating point values taking into account four different matrix sizes, 1024 × 1024,

2048× 2048, 4096× 4096 and 8192× 8192. All test programs were compiled using

g++-4.7.2. Also, in order to assess the quality of our approach, the performance of

our HPL implementation tuned by means of a genetic search process is compared to

the performance of two OpenCL state-of-the-art implementations, namely clBLAS

2.4 [19] and ViennaCL 1.5.1 [110]. We have selected these implementations because

HPL is also currently based on OpenCL, they can be executed in the same range

of platforms as our HPL adaptive code, and they also support some kind of adap-

tive behavior depending on the underlying hardware. We now briefly describe these

libraries.

First, clBLAS is the implementation used by AMD in its clMath suite and thus

it is the official BLAS library in the AMD platform. It includes a profiling tool that

queries some of the properties of the platform where the matrix multiplication will

be run. This information is used to select some candidate values for parameters such

as the granularity of the work, both group and thread-level tile widths, and vector

lengths, and to decide whether local memory is used or not. Using these ranges of

values, the tool generates a set of representative kernels, which are run for different
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problem sizes and it chooses the best one as the single optimized version for the

platform. Originally, the tool only supports GPU profiling. We have modified it to

be able to profile also the hardware of the rest of our testing platforms.

The ViennaCL implementation has several parameters that can be tuned for each

platform. The latest distributions of ViennaCL, from 1.6.2 on, provide heuristically

tuned values of these parameters for some of these platforms, but they deliver bad

performance compared to our implementation. Previous versions of ViennaCL, such

as 1.5.1, contained an auto-tuning tool that performs an exhaustive search for the

values of these parameters, within a heuristically defined vast range, guided also

by kernel execution time. On average, the performance of ViennaCL using this

auto-tuner is 5 times the performance using the heuristically selected values, but on

exchange, it requires a very large search time. The performance results reported in

this work for ViennaCL are those resulting of this exhaustive search.

Table 3.4 shows the performance results for the three implementations in the

four platforms tested. The third column contains the execution time in milliseconds

and the performance measured in GFLOPS of the best kernel found by our geneti-

cally tuned HPL implementation. The fourth and fifth columns shows the speedup

Platform Size
Best kernel performance Speedup

Execution time (GFLOPS) clBLAS ViennaCL

CPU

1024 6.75 ms (318.00) 2.12 1.34
2048 56.45 ms (304.33) 1.92 1.33
4096 568.52 ms (241.75) 2.35 1.11
8192 4768.57 ms (230.57) 2.57 1.13

Nvidia

1024 2.22 ms (969.52) 1.53 1.05
2048 17.19 ms (999.64) 1.47 1.00
4096 133.89 ms (1026.54) 1.55 1.02
8192 1069.18 ms (1028.37) 1.55 1.03

AMD

1024 1.01 ms (2126.22) 2.50 2.07
2048 6.53 ms (2630.91) 1.35 1.28
4096 63.49 ms (2164.73) 0.93 1.06
8192 839.19 ms (1310.21) 1.19 1.10

ACC

1024 7.43 ms (288.91) 1.81 2.08
2048 44.38 ms (387.11) 1.70 2.22
4096 350.95 ms (391.62) 1.54 2.17
8192 3213.56 ms (342.15) 1.82 2.02

Table 3.4: Speedups achieved by best versions found
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Figure 3.3: Performance in GFLOPS of clBLAS, ViennaCL and HPL best versions

achieved with respect to the clBLAS and ViennaCL implementations. Figures 3.3.a)

to 3.3.d) compare the performance in GFLOPS of clBLAS and ViennaCL to that

of our implementation for each problem size and platform. Let us recall that the

kernels of all the implementations have been previously adapted to the underlying

hardware by means of their respective profiling and tuning procedures. The results

show that our implementation outperforms these two implementations for all matrix

sizes and on the four platforms with the sole exception of matrix multiplication of

size 4096 in the AMD platform. In this case, our HPL implementation is beaten nar-

rowly by the clBLAS implementation. The average speedup of our approach is 1.74

with respect to clBLAS and 1.44 with respect to ViennaCL. Compared to clBLAS,

our implementation achieves a peak speedup of 2.57 in the CPU platform for the
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8192 size. The peak speedup with respect to ViennaCL is 2.22 and it is achieved

in the ACC platform for the 2048 size. All the comparisons were done against the

corresponding optimized versions generated by both clBLAS and ViennaCL for each

different problem size.

Table 3.5 shows the best values of the parameters of the HPL generic matrix

multiplication kernel found by the genetic algorithm. These parameters have been

explained in Table 3.2. The Table shows that the values selected for each platform

and for each problem size are different, and they are difficult to predict using a single

general heuristic. A pattern can be observed in the values taken by some parameters

within the same platform, but they cannot be easily found a priori.

Table 3.6 contains the time consumed by the tuning procedures conducted by our

genetic algorithm, the clBLAS profiler and the ViennaCL auto-tuner. On average,

our genetic search is 1.18 times faster than the clBLAS profiler. For the CPU and

ACC platforms, the sum of times consumed by our genetic search for each matrix

size is competitive in relation to that consumed by the clBLAS profiler. In the Nvidia

and AMD platforms, both composed of GPUs, the clBLAS search procedure is quite

faster, which is understandable taking into account that it is specifically directed

to this kind of devices. The results also show that the ViennaCL auto-tuner is 160

Device Size sz(x,y) lsz(x,y) bsz(x,y) (tW,uf) v(A,B,C) copy(A,B) order

CPU

1024 (256,64) (8,64) (16,4) (32,1) (8,8,8) (2,0) 201
2048 (512,128) (8,128) (16,4) (32,1) (8,8,8) (2,0) 201
4096 (1024,256) (2,256) (16,4) (256,8) (16,16,16) (1,0) 012
8192 (2048,512) (32,32) (16,4) (32,4) (16,16,16) (2,0) 201

Nvidia

1024 (128,256) (2,64) (4,8) (32,2) (2,4,4) (2,0) 210
2048 (512,256) (4,64) (8,4) (256,4) (2,4,4) (2,0) 102
4096 (512,512) (16,16) (8,8) (32,2) (2,2,2) (2,0) 102
8192 (1024,1024) (2,128) (8,8) (32,2) (4,8,8) (2,0) 210

AMD

1024 (256,128) (4,32) (8,4) (128,1) (4,8,8) (2,0) 102
2048 (256,256) (1,128) (8,8) (256,2) (4,8,8) (2,0) 120
4096 (512,512) (4,16) (8,8) (32,2) (4,8,8) (2,0) 012
8192 (1024,1024) (1,128) (8,8) (32,4) (4,8,8) (2,0) 012

ACC

1024 (256,64) (1,16) (16,4) (8,2) (1,16,16) (0,0) 120
2048 (256,128) (1,8) (16,8) (512,8) (8,16,16) (0,0) 120
4096 (2048,256) (16,32) (16,2) (32,1) (8,16,16) (2,0) 201
8192 (4096,512) (16,16) (16,2) (32,1) (16,2,2) (2,0) 021

Table 3.5: Configuration of best versions found using our self-adaptive kernel
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Device Size
Total tuning time (s)

GA clBLAS ViennaCL

CPU

1024 120.57

42947.26

32428.25
2048 339.99 60438.13
4096 1729.80 500775.18
8192 19286.90 4186086.80

Nvidia

1024 242.04

1225.53

18836.30
2048 331.40 38292.62
4096 4429.57 186041.36
8192 17127.50 1394675.71

AMD

1024 1579.74

5425.97

1911.00
2048 2422.34 6221.00
4096 4587.55 60595.37
8192 5792.07 > 3 days

ACC

1024 260.32

86501.20

121891.58
2048 915.69 211610.18
4096 4401.47 1145630.97
8192 31973.30 > 3 days

Table 3.6: Total times for tuning self-adaptive kernels

times slower than our genetic search procedure. This large difference is undoubtedly

due to the time-consuming exhaustive search it conducts.

3.5. Conclusions

In this chapter, we have presented a set of techniques to generate self-optimizing

codes in HPL. These techniques are based on generic programming and the RTCG

capabilities of the HPL embedded language for kernels. The resulting codes can

be automatically optimized for a given device by finding the appropriate values

for a set of optimization parameters. These parameters decide whether a given

optimization technique is going to be applied or nor and/or the way it is going to be

applied. The search of the best values for these parameters is guided by a genetic

algorithm where each individual is evaluated using its execution time. This way,

the techniques described in this chapter offer an alternative to complex auto-tuning

libraries or complex source-to-source compilation tools.

As a case study, we have generated a generic adaptable version of the matrix

multiplication algorithm. In our implementation a dozen of parameters allow to
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tune the kernel for the different platforms and problem sizes. The performance

of our adaptive kernel has been compared to two state-of-the-art OpenCL adaptive

implementations of the matrix product, namely, clBLAS and ViennaCL. The kernels

used by clBLAS can be adjusted to the device where they are going to be run by

means of a prior profiling. The ViennaCL implementation can be tuned through a

set of parameters, but their values are selected by means of an exhaustive search.

Except in a single test, where clBLAS takes the lead for a single matrix size in

an AMD GPU, our implementation systematically outperforms the other adaptive

libraries in four systems: an NVIDIA GPU, an AMD GPU, a multicore Intel CPU

and an Intel Xeon Phi accelerator. The average speedup of our implementation

with respect to clBLAS and ViennaCL is 1.74 and 1.44, respectively. Compared to

clBLAS, our implementation achieves a peak speedup of 2.57 in the CPU platform

for the 8192 size. The peak speedup with respect to ViennaCL is 2.22, and it is

achieved in the Xeon Phi for the 2048 size. Besides finding faster versions of the

matrix multiplication, our genetic search is on average 1.18 times faster than the

clBLAS profiling and 160 times faster than the exhaustive search implemented by

ViennaCL.

3.6. Related work

Matrix multiplication is an algorithm extensively studied in the bibliography for

multiple kinds of devices, including Nvidia [59] and AMD [68] GPUs. Some of these

works focus on the study of several linear algebra operations. For example, Vien-

naCL [110] provides an OpenCL implementation of several linear algebra routines,

including the matrix multiplication. Their approach is based in a generic version

of the matrix multiplication where the parameters are either fixed heuristically or

using an auto-tuner driven by the execution time. ViennaCL is, to the best of our

knowledge, the best-performing OpenCL implementation of the matrix multiplica-

tion. Their auto-tuner obtains worse performance results than our implementation

and, in addition, the search times are several orders of magnitude larger than ours.

The reason for this latter problem is that they run an exhaustive search process,

instead of an informed one like our HPL implementation does by means of a genetic

algorithm.
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clMAGMA [15] introduces an OpenCL version of the MAGMA library [111].

They use clBLAS to implement BLAS routines, including the matrix multiplica-

tion operation. Thus, our comparison to clBLAS is valid for this library. There

are more approaches that try to achieve performance portability of linear algebra

problems through iterative processes. For example, [23] uses iterative compilation

to select the optimal parameters for GPU codes according to a set of pre-defined

parameterized templates. They have 10 parameters, while we tune 14 parameters.

They do not report the execution times of their autotuner. We obtain a better

performance, although obviously we are using newer architectures. Matsumoto et

al [69] automatically generate and tune several parametrized OpenCL versions of

the ATB variant of the GEMM routine. These versions are implemented following

different algorithms devoted to exploit specific features of different kinds of devices.

Moreover, the search process conducted consisted in an exhaustive search of the

fastest kernels among tens of thousands of versions that had been previously chosen

by means of heuristics. Notice that the execution time measured for each kernel

included the time consumed by the transposition of matrix A.

This kind of linear algebra problems are also used to prove the abilty of rewrite-

based methods to generate optimized code for accelerators. Steuwer el al [107] offer a

high-level functional language language embedded in Scala to write kernels which are

internally translated into an intermediate representation based on λ-calculus [103].

The language also includes heuristically defined rules that rewrite its functions as

compositions of primitives, which are in turn linked to parametrized OpenCL code

snippets. The implementation properties covered by these parameters are similar to

those we cover in our self-adaptive kernels, such as workspaces sizes, vector lengths,

or unroll factors. Optimized versions of kernels are found by means of an exhaustive

search over a previously pruned subset of all the possible OpenCL implementations

of an input kernel. That pruning is performed by keeping the values of the afore-

mentioned parameters in a range of heuristically fixed values which are expected to

produce the best code versions.

Other approaches are more general and they focus on a wider range of appli-

cations. For example, a simple model based on both hardware and application

parameters is used in [35] to build an OpenCL performance-portable implemen-

tation of data streams clustering and to generate tuned versions of it for several
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NVIDIA and AMD GPUs. More complex computations can be tuned by selecting

the best implementations for the different numerical routines of which they are com-

posed. Nitro [74] is a framework that provides programmers with a mechanism to

manage collections of these building blocks and also information related to their

performance in different platforms and for different applications. This information

is used to train the framework about how to select optimal combinations of variants

of those routines in order to solve different kinds of problems, such as sparse matrix

operations, conjugate gradient solvers, breadth-first search algorithms, histogram

calculations, and sorting operations.

Last but not least, there are solutions that intend too to provide self-adaptive

implementations no matter the problem addressed in the kernel. A relevant work

following this approach is CLTune [78], which is contemporary to our self-adaptive

HPL kernels and consists in an auto-tuner for OpenCL kernels. Programmers must

identify the parameters they consider that may affect the performance of their codes,

and then refactor their kernels in terms of such parameters. The tool also provides a

C++ programming interface through which the users must register the parameters

to tune, set a range of valid values for each parameter and launch the optimization

process. Internally, this tool deals with the parameters by means of macros and

another generic programming techniques. Our approach, in turn, is not only based

on this latter paradigm but also thoroughly exploits the run-time code generation

capabilities provided by the HPL embedded kernel language. The search strategies

implemented in [78] to tune the parameter values are a randomized search, a simu-

lated annealing technique and a particle swarm evolutionary algorithm, all of which

evaluate the versions they generate using the kernel execution time. The authors

validate their approach by means of two use cases, a two-dimensional convolution

and a matrix multiplication. Likewise ours, their implementation of this latter ker-

nel is inspired in those from clBLAS and the aforementioned works of Matsumoto

et al. Thus, it is optimized similarly to our self-adaptive kernel, although their local

memory caching procedure for the input matrices is implemented in a more refined

way. The devices targeted were several NVIDIA and AMD GPUs, on which they

also outperform clBLAS, although no tests were run either on CPUs or on other

kinds of accelerators such the Intel Xeon Phi.





Chapter 4

Performance-portable HPL

The approach presented in Chapter 3 to enable performance portability was built

on top of the Heterogeneous Programming Library (HPL). This solution consists of

a set of techniques to write self-optimizing HPL codes that use the run-time code

generation (RTCG) capabilities of this library. By themselves, these techniques are

not specially difficult to implement. However, blending them in order to achieve a

parametrized implementation for a given problem is a more complex process that

leads to quite long kernels. For instance, the matrix multiplication HPL self-adaptive

kernel we implemented as use case in that chapter is about 350 lines long. Also,

HPL kernels written following this approach were claimed to adapt themselves au-

tomatically to perform well in a particular device. To achieve this, proper values

for the optimization parameters must be found. In the matrix multiplication use

case a genetic algorithm was implemented to find these values, such informed search

methods being clearly more affordable than any exhaustive alternative. However,

these strategies are still based on the execution of a considerable number of versions,

which makes them quite time-consuming.

In this chapter we go a step further and try to overcome these inconveniences

so that performance portability can be provided on top of HPL without requiring

almost any intervention from the programmer. In order to achieve this, we equipped

HPL with a just-in-time optimizer that automatically tunes the code at run-time for

the device where it is going to be executed. This just-in-time optimization process

has two interesting characteristics: (1) it is lightweight, so that it does not delay too

127
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much the execution of the code, and (2) it performs a set of optimizations typically

applied in heterogeneous systems to tune a code for a target device. The flowchart

shown in Figure 4.1 offers an overview of this optimization process. Regarding the

input, the programmers have to write their HPL kernels in a naive way (without

using vectorization, local memory or other optimization features), just encoding the

calculation of one point of the solution. Moreover, the programmers also have to

enclose that code inside a compute section, leaving variable declarations and other

parts of the kernel out of it. This hint gives valuable information to the optimizer and

it simplifies the optimization process. The naive input kernel is then loaded into an

abstract syntax tree (AST) representation. Transformations such as exploiting local

memory when available, the adjustment of the amount of work executed by each

thread or loop tiling are applied on the tree in the order depicted in the flowchart. A

set of parameters, such as the tile size if the tiling technique is applied, or the exact

amount of work that is going to be assigned to each thread, drive both the application

of each individual transformation and the conditions under which it is applied. The

values for the parameters are tuned for a given device according to some heuristics

based in general guidelines to optimize codes for heterogeneous devices. By tuning

these values, the code generated from the transformed AST is expected to maximize

parallel execution and both memory and instruction throughput when it is run in a

target device.

The rest of this chapter is organised as follows. First, the code generation in-

ternals of HPL are introduced in Section 4.1, focusing on how kernels written using

the HPL embedded language are translated into OpenCL C source code. Section 4.2

describes how that code translation process is overridden in order to load an HPL

kernel into an AST manageable by the just-in-time optimizer. Then, in Section 4.3

the just-in-time optimization process is explained, which includes the description

of the transformation techniques implemented, the optimization parameters derived

from those techniques and the heuristics followed to give values to these parameters

at run-time. This proposal is validated in Section 4.4 by optimizing several HPL

kernels for multiple target devices and then discussing both the performance of the

optimized kernels and the impact that the generation process of those codes has in

such a just-in-time approach. Section 4.5 contains the conclusions drawn from the

work presented in this chapter. Finally, the main features of some optimization tools

that also follow to some extent a just-in-time approach are reviewed in Section 4.6.
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4.1. HPL code generation internals

When both the kernel embedded language and the host API of HPL were intro-

duced in Section 3.1.2, we mentioned that its back-end currently generates OpenCL

source code. Namely, HPL translates its kernels at run-time into OpenCL C kernels

using the Portable Expression Template Engine (PETE) [43]. PETE is a portable

C++ framework that lets users easily add expression-template functionality to con-

tainer classes and perform complex expression manipulations. The expression tem-

plates technique allows to exploit the C++ templates to create parse trees of array

expressions at compile time [113]. Along this section we will explain how HPL uses

and extends PETE to parse the expressions composed of Array references and found

on kernel instructions and to evaluate them as strings in order to compose the equiv-

alent OpenCL code.

Let us start by introducing how the members of such expressions are evaluated.

By default, PETE supports 45 built-in operators, including all the C/C++ math-

ematical operators and a collection of common mathematical functions. Moreover,

any custom function needed can be added to the operator set supported by the

expression-template system of PETE. This set is automatically built by means of a

helper tool called MakeOperators, whose inputs are text files that include the spec-

ification of the operators. Listing 4.1 contains an extract of StringOps.in, a file

1 unaryOps

2 -----

3 TAG = "OpNs"

4 FUNCTION = "native_sqrt"

5 EXPR = "return \" native_sqrt (\" + a + ’)’;"

6 -----

7 ...

8 -----

9 binaryOps

10 -----

11 TAG = "OpAdd"

12 FUNCTION = "operator +"

13 EXPR = "return ’(’+ a + ’+’ + b + ’)’;"

14 -----

15 ...

Listing 4.1: PETE operator specification file: StringOps.in example
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from the HPL library that specifies for PETE the mathematical and logical func-

tions provided by the embedded kernel language. The operators specified in such

files must be classified in terms of the number of operands they expect. Thus, notice

how the headings unaryOps in line 1 and binaryOps in line 9 lead the lists of speci-

fications for unary and binary operators respectively. The specifications for a couple

of operators, one of each type, have been excerpted from the StringOps.in file. The

unary operator native sqrt(), which supports its OpenCL homonym function is

defined in lines 3-5, while lines 11-13 contain the specification for operator+, which

supports the common binary addition (+) operator. Both specifications follow the

same structure, expecting three properties to be defined. Namely, TAG identifies

each operator, FUNCTION is the name of the operator function expected, and EXPR

contains a description of how to evaluate the operator on specific elements. The

arguments to the functions must be referred with a in unary operators, a and b in

binary ones, and a, b and c in trinary ones. No example of this latter trinary case

is shown in the file excerpt provided. Let us recall that the operators specified in

StringOps.in must be evaluated to their OpenCL string equivalents rather than to

the result of the operation they represent, which is the default behavior of PETE.

In this latter case, for instance, the EXPR description for OpAdd would be simply

(a + b), which eventually asks C++ to perform the a+ b operation. Nevertheless,

in our example we are asking C++ to build and return a string that codifies such

operation in OpenCL.

The operands of these functions can be literals, non-terminal nodes of an expres-

sion, or objects from any user-defined container class, so that the operators could

be combined to incrementally build up the parse tree of an expression. PETE im-

plements such combination mechanisms, but it must be told how to evaluate that

container objects when passed as arguments to the operator functions. Regard-

ing the HPL kernel embedded language, the Array templated class hierarchy, used

either as Array<T,ndim> or through its convenience types (Int, Float, . . . ) for

Array<T,0> scalars, plays such a container role. Listing 4.2 contains the specializa-

tions that PETE needs to emit the corresponding OpenCL string equivalent when

any variable of such types is referred in a kernel. The code in lines 1-8 generates

the OpenCL string for any IndexedArray<T,ndim> occurrence found in an HPL

kernel. Array<T,ndim> objects return that specialized interface when they are ref-

erenced using the [] operator. For example, an Array<int,2> a will return the
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1 template <typename T, int NDIM >

2 struct LeafFunctor <HPL:: IndexedArray <T, NDIM >, StringizeExpr > {

3 typedef HPL:: String_t Type_t;

4 static Type_t apply(const HPL:: IndexedArray <T, NDIM > &v,

5 const StringizeExpr &) {

6 return v.string ();

7 }

8 };

9
10 template <typename T>

11 struct LeafFunctor <HPL::Array <T, 0>, StringizeExpr > {

12 typedef HPL:: String_t Type_t;

13 static Type_t apply(const HPL::Array <T, 0> &v,

14 const StringizeExpr &) {

15 return v.string ();

16 }

17 };

Listing 4.2: PETE specializations for container classes: HPL Array example

1 template <>

2 struct LeafFunctor <int , StringizeExpr > {

3 typedef HPL:: String_t Type_t;

4 static Type_t apply(int a, const StringizeExpr &) {

5 return HPL:: stringize(a);

6 }

7 };

Listing 4.3: PETE specializations for literals: int literal example

IndexedArray<int,2> interface when accessed as a[row][col] in a kernel, and

through that interface a string() method is invoked (line 6) to get the string

which encodes such memory access in OpenCL. In a similar vein, the code in lines

10-17 specializes the evaluation mechanism to generate the OpenCL equivalent for

Array<T,0> scalar references in a kernel. Such objects also offer a string() method,

which is invoked in line 15. Let us add that when an HPL array is declared as ei-

ther a private or a local memory structure inside a kernel, the library captures such

declaration, assigns an identifier to the structure and uses that identifier to generate

a string with the corresponding OpenCL declaration. This string is appended to

a code string buffer maintained by a class called Codifier, which is in charge of

eventually emitting the full working OpenCL translations of kernels. Moreover, the

evaluation mechanism has to be specialized also for literals, since HPL needs PETE
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to print the value of a given literal in a string instead of just taking the value directly

to operate with it. The code from Listing 4.3 shows such a specialization for int

(integer) literals. For these cases, HPL implements a stringize() method, invoked

in line 5, that takes the literal as an argument and prints it in the string returned.

At this point, the refinements and extensions performed by the HPL implementa-

tion on the PETE default behavior allow this latter framework to generate OpenCL

code strings for each expression parsed from an HPL kernel. When such expres-

sions are in the top level of a kernel body, the aforementioned Codifier class just

takes their respective translations and pushes them to the code buffer. However, the

expressions might be also inside HPL code blocks such as if or for . When the

kernel embedded language was introduced in Section 3.1.2, we made a distinction

between such HPL blocks, which the programmers must use to implement alterna-

tive and repetitive constructs in their kernels, and those from C++ used to exploit

the run-time code generation capabilities of the library. The main differences iden-

tified then were, first, the addition of the underscore to avoid the usage of reserved

C++ keywords, and second, the arguments being separated with commas instead

of semicolons when needed. The HPL code constructs, as the rest of the kernel

embedded language, can be accessed by the programmers through the HPL.h header

file. Regarding this kind of constructs, they are provided by means of some macros

defined in that file, and which follow the aforementioned distinctive format. As an

example, the definition of the for macro is shown in Listing 4.4. Arguments a, b

and c in line 6 expect respectively the initialization statement of the loop counter,

the boolean ending condition and the counter update instruction. When such a

for (<init>,<end>,<step>) is used in an HPL kernel, the code from that macro

is inlined and run. Thus, the OpenCL equivalents for a, b and c (lines 8-10) are

generated and then passed as arguments to a method for of the Codifier object

(lines 7-11). This method, whose implementation is excerpted in Listing 4.5, builds

a string encoding the header of the equivalent OpenCL for loop, and pushes it

to the code buffer (line 6). Then, in line 8 the beginBlock() method is called to

inform the codifier that any expression parsed from now on belongs to the new for

loop opened. Notice that before running the instructions from the body of the HPL

kernel for loop, the code from HPL common block macro is inlined just before that

loop. This macro defines the header of a C++ for (lines 2-4 in Listing 4.4). Such

an inlining makes the body of the HPL for loop become also the body of the loop
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1 #define HPL_common_block_macro

2 for(int _hpl_tmp = 0;

3 _hpl_tmp < 1;

4 TheGlobalState (). getCodifier (). endBlock(), ++ _hpl_tmp)

5
6 #define for_(a,b,c)

7 TheGlobalState (). getCodifier (). for_(

8 stringize(a),

9 stringize(b),

10 stringize(c)

11 );

12 HPL_common_block_macro

Listing 4.4: HPL interfaces for code constructs: for example

1 void Codifier ::for_(const String_t& init ,

2 const String_t& cond ,

3 const String_t& update)

4 {

5 <...>

6 add("for(" + init + "; " + cond + "; " + update + ") {", true);

7 <...>

8 beginBlock ();

9 }

Listing 4.5: HPL Codifier class: for loop processing

header added by the macro. Thus, in its first iteration, it runs the code in its body,

which is therefore translated into OpenCL. When that iteration ends, the loop runs

its counter update instructions set (line 4). Here, the endBlock() invocation closes

the block in the OpenCL code buffer and informs the codifier about that. This

way, the library is able to properly open and close, and also nest when needed, the

multiple code constructs offered by the embedded kernel language.

4.2. Building an AST from an HPL kernel

As the flowchart depicted in Figure 4.1 shows, a user naive HPL kernel must

be converted first into an abstract syntax tree (AST) in order to be processed by

the just-in-time optimizer. Such an AST is built by capturing the expressions that

PETE parses from the kernel and loading them into nodes of the tree. This AST
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representation of the kernel was designed following the classical composition design

pattern [39]. In order to compose such a tree, the original kernel code generation

process of HPL has been tweaked. The modifications performed are explained in

Section 4.2.1. In addition to an abstract representation of the kernel syntax, the

optimizer also needs to collect information about the access patterns derived from

the memory references found in the kernel. A classification for such patterns is

presented in Section 4.2.2.

4.2.1. Overriding the original code generation process

Following the same path as in Section 4.1 to explain how HPL uses PETE, now

we introduce the changes needed to use PETE in order to emit AST nodes and

subtrees instead of composing OpenCL code strings.

Regarding the PETE specification files, the EXPR property of each operator de-

fined must be modified to return an instance of the AST node class that represents

the corresponding operation. Such instances are created by calling the proper node

constructor. Lines 5 and 13 from Listing 4.6 show these changes in relation to the

operators described in the original StringOps.in excerpt contained in Listing 4.1.

Now, the operand arguments expected by the node constructors are instances of

any class of the AST hierarchy, so that both literals and Array objects must be also

loaded into AST nodes. Listings 4.7 and 4.8 contain the code specializations needed

so that PETE emits such nodes for Array operands and int literals, respectively.

In the Array operands case, notice how a generateASTNode() method is invoked in

lines 6 and 15. This method, which is the counterpart of string(), has been added

to both the IndexedArray<T,ndim> and Array<T,0> interfaces and it returns the

AST node representation of such memory accesses. As line 5 from Listing 4.8 shows,

for literals just a node containing its string representation is returned.

Unsurprisingly, similar changes must be performed on both macros and Codifier

methods that deal with HPL code constructs. The new version of the for macro

definition is shown in Listing 4.9. In this case, the arguments are first transformed

into AST nodes (lines 8-10) and then passed to a modified implementation of

Codifier::for (). Now this method, instead of emitting a string encoding the

OpenCL for header, it instantiates an AST node representing a for loop (line 6 of
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1 unaryOps

2 -----

3 TAG = "OpNs"

4 FUNCTION = "native_sqrt"

5 EXPR = "return new FunctionUnaryOpASTNode (\" native_sqrt \",a);"

6 -----

7 ...

8 -----

9 binaryOps

10 -----

11 TAG = "OpAdd"

12 FUNCTION = "operator +"

13 EXPR = "return new BinaryOpASTNode (\"+\" ,a,b);"

14 -----

15 ...

Listing 4.6: PETE modifications to emit an AST: StringOps.in example

1 template <typename T, int NDIM >

2 struct LeafFunctor <HPL:: IndexedArray <T, NDIM >, GenerateAST > {

3 typedef HPL:: String_t Type_t;

4 static Type_t apply(const HPL:: IndexedArray <T, NDIM > &v,

5 const GenerateAST &) {

6 return v.generateASTNode ();

7 }

8 };

9
10 template <typename T>

11 struct LeafFunctor <HPL::Array <T, 0>, GenerateAST > {

12 typedef HPL:: String_t Type_t;

13 static Type_t apply(const HPL::Array <T, 0> &v,

14 const GenerateAST &) {

15 return v.generateASTNode ();

16 }

17 };

Listing 4.7: PETE modifications to emit an AST: HPL Array example

Listing 4.10). Then, that node is appended to its parent in the tree by means of the

appendNode() method called in line 7. At this point, it is worth mentioning that,

initially, a node representing the kernel function body is set as parent and therefore,

any top-level expression found is appended to it when appendNode() is called. In

order to support nested code constructs, a stack of parent nodes is maintained. In

this case, the stack is updated in line 8 by pushing the new node created. Then,

the new top element of the stack is set as the current parent node of the Codifier
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1 template <>

2 struct LeafFunctor <int , GenerateAST > {

3 typedef HPL:: String_t Type_t;

4 static Type_t apply(int a, const GenerateAST &) {

5 return HPL:: LeafASTNode(HPL:: stringize(a));

6 }

7 };

Listing 4.8: PETE modifications to emit an AST: int literal example

1 #define HPL_common_block_macro

2 for(int _hpl_tmp = 0;

3 _hpl_tmp < 1;

4 TheGlobalState (). getCodifier (). endBlock(), ++ _hpl_tmp)

5
6 #define for_(a,b,c)

7 TheGlobalState (). getCodifier (). for_(

8 getASTNode(a),

9 getASTNode(b),

10 getASTNode(c)

11 );

12 HPL_common_block_macro

Listing 4.9: PETE modifications to emit an AST: for example

1 void Codifier ::for_(const ASTNode* init ,

2 const ASTNode* cond ,

3 const ASTNode* update)

4 {

5 <...>

6 ForLoopASTNode* forNode = new ForLoopASTNode(init ,cond ,update)

7 appendNode(forNode );

8 parentNodes_.push(forNode );

9 parentNode_ = parentNodes_.top ();

10 <...>

11 beginBlock ();

12 }

Listing 4.10: PETE modifications to emit an AST: for loop processing

object (line 9), so that the subtrees representing further expressions found inside

the for block are appended to it. Once the code of the HPL for loop is processed,

a modified version of the endBlock() method is called. This version pops the for

node from the stack of parents, and then sets back the top of the stack as the current

parent node of the codifier.
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With these modifications, the result of evaluating an HPL kernel function is an

AST representing it, instead of its OpenCL translation. However, as the HPL back-

end is OpenCL, we still need a mechanism to emit an OpenCL implementation for a

given tree. Such implementation is built by means of a stringize() method, whose

implementation is mandatory for all the classes of the AST hierarchy. In leaf nodes,

this method directly emits the equivalent OpenCL string, whereas in non-terminal

nodes it visits the children to invoke the same method and then combine the strings

received to generate its translation. Thus, the invocation of the stringize() method

of the root node of the tree will eventually generate an OpenCL implementation

of the kernel. Notice how now the expression parsing and the code generation

processes are two separate steps, which enables the ability to manipulate the AST

in any desired way before translating it into OpenCL code. This allows the library

to apply to the input kernel a set of source-to-source code optimizations in form of

transformations performed on the AST representation. Thus, when the optimization

process is finished, the transformed AST is translated into an optimized OpenCL

version of the input HPL kernel.

4.2.2. Gathering memory access information

Before the optimization process starts, the AST has to be populated with in-

formation on the access patterns that appear in the code. In order to do that, the

references to data structures located in global memory are searched in the branch

of the AST corresponding to the compute section. These references are classified

according to its memory access pattern. In order to do that, the optimizer imple-

ments a simplified version of the analyzer described in [32], which uses the index

expressions of each reference to classify them in one of these seven types, ordered

from the simplest to the most complex one:

1. NoPat: It is the default pattern. The expression(s) that index the data struc-

ture do(es) not include global identifiers or loop counters.

2. SinglePat: The indexing expressions only contain global identifiers, each po-

sition of the data structure being accessed by one single work item. HPL

allows the users to define global domains with up to three dimensions, which

leads to the three different cases depicted in Figure 4.2.
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3. InnerPat: The indexing expressions only contain inner computing loop coun-

ters, each dimension of the structure being traversed using a loop counter with

stride 1. As Figure 4.3 depicts, the following cases arise depending on both

the number of inner computing loops found in the code and the dimensionality

of the structure traversed:

For 1D structures, the (kx) counter of a single inner computing loop

iterates along the only dimension of the structure.

For 2D structures, the (ky,kx) counters of a two-loop nest iterate re-

spectively along the rows (y dimension) and the columns (x dimension)

of the structure.

For 3D structures, the (kz,ky,kx) counters of a three-loop nest iterate

respectively along the z, y and x dimensions of the structure.

0 1 2 3 0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

0,0,0 0,0,1 0,0,2 0,0,3

0,1,0 0,1,1 0,1,2 0,1,3

0,2,0 0,2,1 0,2,2 0,2,3

3,3,0 3,3,1 3,3,2 3,3,3

0,3,0 0,3,1 0,3,2 0,3,3

3,0,3

3,1,3

3,2,3

3,3,3

idx idy,idx idz,idy,idx

SinglePat

2D 3D1D

Figure 4.2: Just-in-time optimizer memory patterns: SinglePat

0 1 2 3 0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

0,0,0 0,0,1 0,0,2 0,0,3

0,1,0 0,1,1 0,1,2 0,1,3

0,2,0 0,2,1 0,2,2 0,2,3

3,3,0 3,3,1 3,3,2 3,3,3

0,3,0 0,3,1 0,3,2 0,3,3

3,0,3

3,1,3

3,2,3

3,3,3

kx ky,kx kz,ky,kx

InnerPat

2D
2 loops

3D
3 loops

1D
1 loop

Figure 4.3: Just-in-time optimizer memory patterns: InnerPat
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4. RowPat: The rightmost dimension of a structure is indexed using a loop counter

with stride 1, whereas the rest of its dimensions must be indexed by the

components of the global identifiers corresponding to the remaining dimen-

sions. These conditions lead to three possible cases, the following two being

depicted in Figure 4.4:

For 2D structures, each (idy,idx) thread in the 2D domain iterates on

the idy-th row of the structure.

For 3D structures, each (idz,idy,idx) thread in the 3D domain iterates

on the (idz,idy,:) row of the structure.

Regarding 1D structures, in such cases all the threads in the 1D domain would

iterate along the only dimension of the structure, this situation being already

identified as a 1D InnerPat memory access.

y,xy,xy,xy,x

z,y,x

RowPat

2D 3D

z,y,x z,y,x z,y,x

idy,idx idz,idy,idx

z,y,x

Figure 4.4: Just-in-time optimizer memory patterns: RowPat

y,x

y,x

y,x

y,x

ColPat

3D2Didy,idx idz,idy,idx

z,y,x

z,y,x

z,y,x

z,y,x

Figure 4.5: Just-in-time optimizer memory patterns: ColPat
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5. ColPat: In this pattern, the loop counter indexes the second rightmost di-

mension of the structure, and the rest are indexed by the corresponding global

identifiers. This pattern represents a work-item traversing slices in a column-

major order, so it can only appear in structures whose dimensionality is greater

than 1. Figure 4.5 shows the two possibilities of this pattern:

For 2D structures, each (idy,idx) thread in the 2D domain iterates on

the idx-th column of the structure.

For 3D structures, each (idz,idy,idx) thread in the 3D domain iterates

on the (idz,:,idx) column of the structure.

6. DepthPat: In this pattern, the loop counter indexes the third rightmost di-

mension of the structure, while the rest are indexed by the corresponding

global identifiers. This pattern, shown in Figure 4.6, represents a work-item

traversing slices across planes in a 3D structure, which are the only for which

this pattern can appear. Thus, each (idz,idy,idx) thread in the 3D domain

iterates on a slice (:,idy,idx) across the planes of the structure.

z,y,x

DepthPat

z,y,x

z,y,x

z,y,x

3Didz,idy,idx

Figure 4.6: Just-in-time optimizer memory patterns: DepthPat

x

y,x

RadiusPat

2D 3D1D

z,y,x

idx idy,idx idz,idy,idx

Figure 4.7: Just-in-time optimizer memory patterns: RadiusPat
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7. RadiusPat: The expressions that index one or several dimensions operate a

global identifier and a loop counter. Thus, a single work item visits several

positions around a pivot position of the data structure defined by the global

identifiers. 1D, 2D and 3D cases of this pattern are shown in Figure 4.7.

For 1D structures, each thread (idx) in the 1D domain pivots on the

(idx) position of the structure to visit several positions along the x di-

mension using a loop counter.

For 2D structures, each thread (idy,idx) in the 2D domain pivots on

the (idy,idx) position of the structure to visit several positions along

both the x and y dimensions using two loop counters.

For 3D structures, each thread (idz,idy,idx) in the 3D domain pivots

on the (idz,idy,idx) position of the structure to visit several positions

along the x, y and z dimensions using three loop counters.

Once the pattern of a single memory reference has been identified, the data struc-

ture accessed is classified as having the same type of pattern. When a data structure

is accessed by multiple references with different patterns, it will be classified as of

the type of the most complex one. We will see the utility of this classification along

the explanation of the optimization process of the AST, which is introduced in the

next section.

4.3. Just-in-time optimization process

By now we have introduced how an HPL kernel can be loaded into an abstract

syntax tree and how additional information about the memory accesses performed

by the kernel can be extracted. As the flowchart depicted in Figure 4.1 shows, those

are two of the three inputs required to run the just-in-time optimization process.

This process consists on the application at run-time of several strategies that are

known to be effective to optimize code for heterogeneous systems. Such strategies

are implemented by means of transformations that, likewise those included on self-

adaptive kernels, are driven by a number of parameters. Depending on the values

given to such parameters, both the set of transformations applied and the way each



4.3 Just-in-time optimization process 143

one is performed individually on the AST will vary. By properly tuning such values,

the library is able to build at run-time different AST representations for an input

kernel and, thus, to generate OpenCL versions optimized for different target devices.

Both the strategies followed and the transformations implemented to apply them are

detailed in Section 4.3.1, whereas the parameters that control them are described in

Section 4.3.2. As shown in Figure 4.1, the values for these parameters are the third

input expected by the optimization process. In the tools presented in Chapters 2

and 3, multiple search algorithms were used to find tuned values for the optimization

techniques supported. These algorithms were time-consuming to different extents,

which made them incompatible with the just-in-time approach followed by this tool.

Thus, the optimizer needs to be provided with a mechanism able to quickly find or,

at least, to retrieve those values at run-time. To meet such a fundamental require-

ment, we have opted for defining some heuristics based on the general capabilities of

different kinds of heterogeneous devices, rather than implementing a specific search

algorithm. These heuristics are presented in Section 4.3.3.

4.3.1. Code transformation techniques

According to the CUDA C Programming Guide [81], the optimization of a CUDA

code has to focus on three basic strategies:

Maximize parallel execution to achieve maximum utilization.

Optimize memory usage to achieve maximum memory throughput.

Optimize instruction usage to achieve maximum instruction throughput.

These strategies, although explicitly recommended in this guide for Nvidia GPUs,

are also applicable to the optimization of the GPUs of other manufacturers and of

any other heterogeneous device capable of executing parallelized codes. In its aim

of tuning codes for any kind of device, our optimizer tries to apply these three

strategies by following these five steps:

1. The tiling stage, where the tiling technique is applied to the code in the

compute section of the HPL kernel.
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2. The local memory exploitation stage, that performs a set of transforma-

tions in the code aimed at using the local memory of the device, when available.

3. The coarser grain adjustment stage, where the code is generalized to allow

the adjustment of the amount of work made by each thread.

4. The private memory exploitation stage, where some of the data structures

are copied to private memory to decrease the pressure on the global memory.

5. The compute loop unrolling stage, where the innermost loop of the code

in the compute section can be unrolled.

This way, the maximization of the parallel execution is targeted by stage 3.

The optimization of the memory usage is targeted by stages 1, 2 and 4, and the

maximization of the throughput is targeted by stages 3 and 5, although we will

see that stage 4 also implies a loop unrolling optimization which also supports this

strategy. The transformations made in each one of these stages are explained now

in turn. The naive matrix multiplication kernel from Listing 4.11 will be used as a

running example throughout this explanation.

Tiling

This step applies the well-known tiling optimization technique to all the loops in

the compute section. This technique can only be applied when the kernel has at least

one loop in its compute section. For example, a naive version of the SAXPY code will

not have such a loop but a naive matrix multiplication, like the one in our running

example, will have it. The purpose of this technique is to split the computation in

tiles to ensure that the information used by the kernel can be maintained in the top

levels of the memory hierarchy. Listing 4.12 shows the tiled version of the loop of

the running example using a generic tile size of tW0 iterations.

Local memory exploitation

The next step tries to exploit the local memory of the device when available.

The local memory is shared among the threads of the same group. As a result,
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1 void mxm(Array <float ,2> c, Array <float ,2> a,

2 Array <float ,2> b, Int K)

3 {

4 Int k;

5 compute {

6 c[idy][idx] = 0.0f;

7 for(k=0;k<K;k++)

8 c[idy][idx] += a[idy][k] * b[k][idx];

9 }

10 }

Listing 4.11: MxM running example: input HPL kernel

1 ...

2 c[idy][idx] = 0.0f;

3 for(kk=0;kk <K;kk+=tW0) {

4 for(k=kk;k<kk+tW0;k++) {

5 c[idy][idx] += a[idy][kk] * b[kk][idx];

6 }

7 }

8 ...

Listing 4.12: MxM running example: application of loop tiling

in order to use it effectively, we have to choose which data structures will make

use of local memory, copy to the local counterpart of each data structure the slices

of them traversed by the threads of the same group, and rewrite the computation

section by replacing the references to the global data structures by references to the

aforementioned local counterparts.

In order to select the data structure that will be copied to local memory, the

optimizer makes use of the information about the access patterns followed by each

memory reference derived when the AST was built. Let us recall that in addition

each data structure was classified as of the same type of access pattern as the most

complex memory reference associated to it. The optimizer inspects this informa-

tion and it selects the data structures having access patterns more complex than

SinglePat to be loaded into local memory. In our running example the result of

this classification is:

c[idy][idx] is classified as SinglePat.

a[idy][k] is classified as RowPat.
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b[k][idx] is classified as ColPat.

Thus, as both the ColPat and the RowPat access patterns are more complex

than SinglePat, matrices b and a are selected to be loaded into local memory in

this example. When the selection is done we have to follow four steps to transform

the code: (1) the local memory counterpart structures have to be declared, (2) code

snippets copying data from global to local memory must be generated, (3) the global

references must be replaced by local ones in the compute section of the kernel, and

(4) if any of the local structure is updated, the information must be copied back to

global memory. Now, we give more details about these four steps.

The most challenging task of the first step, the declaration of the local array, is

to find out which is the appropriate size of each dimension of a local data structure.

These sizes are going to depend on the type of access pattern followed by the memory

references associated to the data structure, and on whether tiling and coarser grain

adjustment transformations are going to be applied to the code. This coarser grain

adjustment transformation is applied in a subsequent step of the optimizer, but

it decides which transformations are going to be applied at the beginning of the

optimization process. Therefore, the information on whether this technique is going

to be applied or not and the grain size are already available at this point.

Table 4.1 shows the expressions used to calculate the size of each dimension of

the local data structure. In this table, lszx, lszy and lszz are the size of the

local space for dimensions 0, 1 and 2 respectively. The parameters tW0, tW1 and

tW2 are the tile sizes for inner computing loops 0, 1 and 2 respectively, if tiling

has been applied to them. If not, their values will be the length of these loops.

The bszx, bszy and bszz parameters appear when the coarser grain adjustment

dims InnerPat RowPat ColPat DepthPat RadiusPat

1D 0 [tW0] - - - [lszx*bszx+tW0]

2D
1 [tW1] [lszy*bszy] [tW0] - [lszy*bszy+tW1]

0 [tW0] [tW0] [lszx*bszx] - [lszx*bszx+tW0]

3D
2 [tW2] [lszz*bszz] [lszz*bszz] [tW0] [lszz*bszz+tW2]

1 [tW1] [lszy*bszy] [tW0] [lszy*bszy] [lszy*bszy+tW1]

0 [tW0] [tW0] [lszx*bszx] [lszx*bszx] [lszx*bszx+tW0]

Table 4.1: Expressions for each dimension size of the local data structure
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transformation is applied. In this transformation the iterations of several loops are

assigned in a block-cyclic manner to threads, and these parameters are the size of

a block of iterations assigned to a given thread. Each parameter is associated to

the loop whose counter indexes a given dimension. Like in the previous cases, x is

associated to dimension 0, y to 1 and z to 2. The rationale of these expressions is

that the optimizer has to copy to local memory only the slice of the data structure

that is going to be traversed by the threads of the current group. In our running

example, the declarations of the local memory counterparts of the data structures

a and b are:

__local float lmem_a[lszy][tW0];

__local float lmem_b[tW0][lszx];

The second step of the transformation consists in copying the information from

global to local memory. We use copy mechanisms similar to those described in [34],

which make use of the access pattern information that we already have. Also,

these mechanisms make sure that the copied data is organized as its copy in global

memory, which simplifies the third step.

Then, in the third step, we have to modify all the references to the global version

of each data structure in the compute section of the kernel, so that they refer to their

local counterparts. In addition, the indexing of these references has to be adjusted

to use local identifiers instead of global ones.

If the data structures that have been copied to the local memory are written,

the optimizer has to perform a fourth step to copy the information back to global

memory. In this case we use the complementary code to the one used in the second

step for the reverse copy.

Finally, the optimizer has to introduce at certain points of the code the local bar-

riers required to synchronize the operation of the different threads of the same group.

For example, after a collaborative copy is done, a local barrier must be performed

to make sure that the copy is completed before the computation starts.

The code snippet in Listing 4.13 shows how our running example is adapted to

use local memory. In this case, the information does not have to be copied back to

global memory, as the information mapped to local memory is only read.
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1 ...

2 for(kk=0;k<K;kk+=tW0) {

3
4 for(lr=lidy;lr <lszy;lr+=lszy)

5 for((lc=lidx);lc <tW0;lc+=lszx))

6 lmem_a[lr][lc] = a[(( idy/lszy)*lszy)+lr][kk+lc];

7
8 for(lr=lidy;lr <tW0;lr+=lszy)

9 for((lc=lidx);lc <lszx;lc+=lszx))

10 lmem_b[lr][lc] = b[kk+lr][(( idx/lszx)*lszx)+lc];

11
12 barrier(CLK_LOCAL_MEM_FENCE );

13
14 for(k=0;k<tW0;k++)

15 c[idy][idx] += lmem_a[lidy][k]* lmem_b[k][lidx];

16
17 barrier(CLK_LOCAL_MEM_FENCE );

18 }

19 ...

Listing 4.13: MxM running example: local memory exploitation

Coarser grain adjustment

The next step tries to adjust the number of threads and, conversely, the amount

of work made by each thread. In order to do this, important modifications must be

performed in the code, as we have to add loops that allow to change the number of

points of the result that are going to be computed by each thread. Let us recall that

in order to benefit from the optimizer, the HPL programmer has to provide a naive

version of the kernel that computes just one point of the result. Therefore, this naive

version minimizes the grain size and maximizes the number of threads required. As

a result, the kernel will have less loops than its sequential version because the loops

have been replaced by parallel executions of the kernel.

A sequential version of our matrix multiplication is shown in Listing 4.14. Let

us notice that the naive kernel shown in Listing 4.11 removes the two outermost

loops, those that index the resulting matrix, and keeps the innermost one, because

it is required to calculate a single point of the result.

As a first step of this transformation, the optimizer is going to recover these

loops, but written in a normalized way. To do this, the existing loops in the compute
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1 for(j=0;j<M;j++) {

2 for(i=0;i<N;i++) {

3 for(k=0;k<K;k++) {

4 c[j][i] += a[j][k] * b[k][i];

5 }

6 }

7 }

Listing 4.14: MxM running example: sequential version

1 ...

2 for(zz=idz*bszz; zz <Z; zz+=szz*bszz)

3 for(yy=idy*bszy; yy <Y; yy+=szy*bszy)

4 for(xx=idx*bszx; xx <X; xx+=szx*bszx)

5 for(z=zz;z<min(zz+bszz ,Z);z++)

6 for(y=yy;y<min(yy+bszy ,Y);y++)

7 for(x=xx;x<min(xx+bszx ,X);x++)

8 [...]

9 ...

Listing 4.15: MxM running example: coarser grain adjustment generic loop nest

section are going to be enclosed in new loops, a pair per dimension of the global

space, and the global identifiers are going to be replaced by the counters of these

loops in all the indexing expressions. This transformation enables the distribution

of the work among a reduced number of threads so that it is possible to reduce the

number of threads that perform the computation. Listing 4.15 shows a generic form

of the loops that would enclose the existing computation if the three dimensions

of the global work-space were used in the naive version of the code. Each pair

of loops in lines 2 and 5, lines 3 and 6, and lines 4 and 7, assigns the iterations

following a block-cyclic distribution, where the block sizes are bszz, bszy and bszx,

respectively.

Listing 4.16 shows a version of our running example with the loops added, where

szx = N/4, szy = M/4, and bszx = bszy = 2. Let us also recall that N and M are

respectively the number of columns and rows of the resulting matrix c. In this case,

the parallel execution requires 16 times less threads and each thread is going to

execute two blocks of two iterations each for each one of the two pair of loops

added. Previous research from [29] showed that the overhead introduced by these

loops is not negligible. For this reason, the optimizer applies small optimizations
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1 for(yy=idy *2; yy <M; yy+=(M/4)*2) {

2 for(xx=idx*2; xx <N; xx+=(N/4)*2) {

3 for(y=yy;y<min(yy+2,M);y++) {

4 for(x=xx;x<min(xx+2,N);x++) {

5 c[y][x] = 0.0f;

6 for(k=0;k<K;k++){

7 c[y][x] += a[y][k] * b[k][x];

8 }

9 }

10 }

11 }

12 }

Listing 4.16: MxM running example: application of coarser grain adjustment

on top of this technique, like removing the inner loop of a pair when the block size

is 1, or removing the outer one when only one block of iterations is assigned to one

thread.

Private memory exploitation

One of the consequences of the transformation applied in the previous step is

that as each thread accesses a larger global memory area, hence there is an in-

crease in the pressure on the global memory. One way to alleviate this pressure is

to make use of the private memory of each processor. In order to do that, good

candidate references must be identified to target with this transformation. Thus,

global memory positions whose content is updated with new values and are clearly

eligible. Exploiting the private memory in such a way contributes to maximize the

usage of processor registers, which is expected to largely increase the performance

of the kernel. The structure of this transformation is similar to the one related to

the exploitation of local memory. First, a private data structure of the appropriate

size has to be declared, then the contents of this private data structure has to be

initialized. After that, the global memory references have to be replaced by pri-

vate ones, and finally, the contents of the private data structure must be copied

back to the corresponding positions of the global memory. These four steps of this

transformation are now explained in turn.

First, the declaration of the private memory data structure has to be placed at
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the beginning of the kernel. This private memory declaration can take two different

forms. Namely, it can be either an array with the appropriate number of dimensions

and of the appropriate size, or it can be a set of independent scalar variables. The

first option is the most logical one and it will simplify the transformation, as the code

will be more natural. However, some device architectures do not support addressing

such private memory regions [40] and some compilers do not map arrays in private

memory to registers but to arrays in global memory, which is counterproductive.

Thus, the explicit declaration in private memory of this set of scalar variables seems

more artificial, but it solves the aforementioned issue.

In our running example, using the version with coarser grain adjustment in

Listing 4.16 as an starting point, the best candidate data structure to be stored in

private memory is the result matrix c. Each thread is going to generate 2 blocks

of 2 × 2 elements of the result, totalling 4 × 4 elements. Thus, that is the size of

the private data structure that must be declared. If we opt for a single array of the

appropriate size, the corresponding declaration would be as follows:

float pBlock_c [4][4];

In turn, if we opt for declaring 16 scalars, the declaration would be:

float pBlock_c_000 , pBlock_c_001;

float pBlock_c_010 , pBlock_c_011;

float pBlock_c_100 , pBlock_c_101;

float pBlock_c_110 , pBlock_c_111;

float pBlock_c_200 , pBlock_c_201;

float pBlock_c_210 , pBlock_c_211;

float pBlock_c_300 , pBlock_c_301;

float pBlock_c_310 , pBlock_c_311;

Furthermore, sometimes the value updated in the original global memory po-

sition depends on previous calculations, their results being stored in intermediate

variables already declared as private in the naive kernel. In these cases, a set of as

many private memory positions as the grain size has been adjusted to must be also

allocated for each intermediate variable. These situations are detected by means of

a simplified dependence analysis routine that we have implemented. This situation

does not arise in our matrix multiplication running example.

Second, the private data structure must be initialized in the same way as the
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1 // Block initialization loop

2 for(y=0;y<4;y++)

3 for(x=0;x<4;x++)

4 pBlock_c[y][x] = 0.0f;

5
6 // Initialization using several private scalars

7 float pBlock_c_000 = 0.0f;

8 float pBlock_c_001 = 0.0f;

9 ...

10 float pBlock_c_311 = 0.0f;

Listing 4.17: MxM running example: private memory initialization options

1 for(yy=idy *2; yy <M; yy+=(M/4)*2) {

2 for(xx=idx*2; xx <N; xx+=(N/4)*2) {

3 br=0;

4 for(y=yy;y<min(yy+2,M);y++) {

5 bc=0;

6 for(x=xx;x<min(xx+2,N);x++) {

7 for(k=0;k<K;k++) {

8 pBlock_c[br][bc] += a[y][k] * b[k][x];

9 }

10 bc++;

11 }

12 br++;

13 }

14 }

15 }

Listing 4.18: MxM running example: compute section using private arrays

global data structure in the original code. Before that, if this initialization is done

inside a loop and the optimizer chooses to generate several private scalars, this loop

must be unrolled with an unroll factor equal to the grain size used in the previous

step. Listing 4.17 shows the result of the application of this step in our running

example. Code initialization snippets derived from both declaration options are

shown in the same figure. First, if the optimizer decides to generate a single private

data structure, and second, if it opts for several scalar variables.

Third, global memory references of the compute section have to be replaced with

their counterparts accessing the private memory structure. If the optimizer chose to

use a single data structure, this process involves using the new private data structure

but with the appropriate indexes. Listing 4.18 shows the new compute section of
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our running example using the private arrays. Notice the instructions added to

initialize (lines 3 and 5) and update (lines 10 and 12) properly the counters used

to reference the private memory structure. Nevertheless, if the optimizer opted for

using several private scalars, the transformation involves unrolling the whole loop

nest that was added to adjust the iteration distribution of the kernel. Let us recall

that scalar variables cannot be indexed using loop counters. This unrolling is usually

more complicated than the one of the initialization, as the original compute section

of the naive kernel may be an imperfect loop nest or a combination of multiple

code constructs. In such cases, instead of applying a simple unrolling the optimizer

should perform an unroll-and-jam transformation, the implementation of this latter

one being a bit more complex. Listing 4.19 shows the same example but using

private scalars. In this code the loops that originally indexed references to the

1 ...

2 for(k=0;k<K;k++) {

3 pBlock_c_000 += a[(idy *2)+(0*(M/4)*2)+0][k]*b[k][(idx *2)+(0*(N/4)*2)+0];

4 pBlock_c_001 += a[(idy *2)+(0*(M/4)*2)+0][k]*b[k][(idx *2)+(0*(N/4)*2)+1];

5 pBlock_c_010 += a[(idy *2)+(0*(M/4)*2)+1][k]*b[k][(idx *2)+(0*(N/4)*2)+0];

6 ...

7 pBlock_c_301 += a[(idy *2)+(2*(M/4)*2)+0][k]*b[k][(idx *2)+(2*(N/4)*2)+1];

8 pBlock_c_310 += a[(idy *2)+(2*(M/4)*2)+1][k]*b[k][(idx *2)+(2*(N/4)*2)+0];

9 pBlock_c_311 += a[(idy *2)+(2*(M/4)*2)+1][k]*b[k][(idx *2)+(2*(N/4)*2)+1];

10 }

11 ...

Listing 4.19: MxM running example: compute section using private scalars

1 \\ Block copy -back loop

2 for(yy=0;yy <4;yy+=2) {

3 for(xx=0;xx <4;xx+=2) {

4 for(y=0;y<2;y++) {

5 for(x=0;x<2;x++) {

6 c[(idy *2)+(yy*(M/4)*2)+y][(idy *2)+(yy*(M/4)*2)+y] = pBlock[yy+y][xx+x];

7 }

8 }

9 }

10 }

11
12 \\ Copy -back from several private scalars

13 c[(idy *2)+(0*(M/4)*2)+0][( idx *2)+(0*(N/4)*2)+0] = pBlock_c_000;

14 c[(idy *2)+(0*(M/4)*2)+0][( idx *2)+(0*(N/4)*2)+1] = pBlock_c_001;

15 c[(idy *2)+(0*(M/4)*2)+1][( idx *2)+(0*(N/4)*2)+0] = pBlock_c_010;

16 ...

17 c[(idy *2)+(2*(M/4)*2)+0][( idx *2)+(2*(N/4)*2)+1] = pBlock_c_301;

18 c[(idy *2)+(2*(M/4)*2)+1][( idx *2)+(2*(N/4)*2)+0] = pBlock_c_310;

19 c[(idy *2)+(2*(M/4)*2)+1][( idx *2)+(2*(N/4)*2)+1] = pBlock_c_311;

Listing 4.20: MxM running example: private memory copy-back options
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private memory structure have been fully unrolled first, and then each reference has

been replaced with its corresponding scalar variable. Notice also how the indexes of

the references that still access global memory must be also unrolled.

This application of the unrolling technique can generate a couple of potential

issues. First, the size of the kernel code is limited in most devices, and when large

grain sizes are set this technique can increase considerably the kernel code size.

Second, such grain sizes may speed up the kernel in some platforms, but the time

consumed by the transformation process might hide that improvement. Thus, it is

important that the optimizer chooses wisely the grain size in order to avoid exceeding

these limitations after the unrolling is applied.

Finally, in the fourth step the information of the private variables is copied back

their corresponding global memory positions. In turn, the private variables that

might have been allocated to perform intermediate calculations were not related

to any global memory position and, hence, they would not copied back anywhere.

Listing 4.20 contains the copy-back sections of our running example using both

private arrays and private scalars.

Let us remind that this transformation technique is able to increase the perfor-

mance largely as a result of the maximization of the usage of the processor registers.

Nevertheless, we must also note that it can also generate registers spilling if more

private memory positions than registers available are allocated, which would cause

the opposite effect. Thus, it is important to carefully select the grain size when

applying the coarser grain adjustment transformation.

Compute loop unrolling

Loop unrolling is another well-known optimization technique. In this step, the

optimizer can unroll the innermost loop of the compute section of the naive kernel.

Such a transformation increases the number of independent statements available to

be scheduled and may help the processor to discover groups of instructions that

can be packed and automatically vectorized. Listing 4.21 shows one version of the

innermost compute loop unrolled with a generic factor uf. This technique could be

applied just after tiling the loop but, as Figure 4.1 shows, it is has been relegated to

the last step of the optimization process. That made the cumulative application of
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1 ...

2 for(kk=0;kk <K;kk+=tW0) {

3 ...

4 for(k=kk;k<kk+tW0;k+=uf) {

5 c[idy][idx] += a[idy][kk+0] * b[kk+0][ idx];

6 c[idy][idx] += a[idy][kk+1] * b[kk+1][ idx];

7 ...

8 c[idy][idx] += a[idy][kk+(uf -1)] * b[kk+(uf -1)][ idx];

9 }

10 ...

11 }

12 ...

Listing 4.21: MxM running example: unrolling a previously tiled loop

1 ...

2 for(kk=0;kk <K;kk+=tW0) {

3 ...

4 for(k=kk;k<kk+tW0;k+=uf) {

5 pBlock_c_000 += a[(idy *2)+(0*(M/4)*2)+0][ kk+0]*b[kk+0][( idx *2)+(0*(N/4)*2)+0];

6 pBlock_c_000 += a[(idy *2)+(0*(M/4)*2)+0][ kk+1]*b[kk+1][( idx *2)+(0*(N/4)*2)+0];

7 ...

8 pBlock_c_000 += a[(idy *2)+(0*(M/4)*2)+0][ kk+(uf -1)]*b[kk+(uf -1)][( idx *2)+(0*(N/4)*2)+0];

9
10 pBlock_c_001 += a[(idy *2)+(0*(M/4)*2)+0][ kk+0]*b[kk+0][( idx *2)+(0*(N/4)*2)+1];

11 pBlock_c_001 += a[(idy *2)+(0*(M/4)*2)+0][ kk+1]*b[kk+1][( idx *2)+(0*(N/4)*2)+1];

12 ..

13 pBlock_c_001 += a[(idy *2)+(0*(M/4)*2)+0][ kk+(uf -1)]*b[kk+(uf -1)][( idx *2)+(0*(N/4)*2)+1];

14
15 pBlock_c_010 += a[(idy *2)+(0*(M/4)*2)+1][ kk+0]*b[kk+0][( idx *2)+(0*(N/4)*2)+0];

16 pBlock_c_010 += a[(idy *2)+(0*(M/4)*2)+1][ kk+1]*b[kk+1][( idx *2)+(0*(N/4)*2)+0];

17 ...

18 pBlock_c_010 += a[(idy *2)+(0*(M/4)*2)+1][ kk+(uf -1)]*b[kk+(uf -1)][( idx *2)+(0*(N/4)*2)+0];

19 ..

20 pBlock_c_301 += a[(idy *2)+(2*(M/4)*2)+0][ kk+0]*b[kk+0][( idx *2)+(2*(N/4)*2)+1];

21 pBlock_c_301 += a[(idy *2)+(2*(M/4)*2)+0][ kk+1]*b[kk+1][( idx *2)+(2*(N/4)*2)+1];

22 ...

23 pBlock_c_301 += a[(idy *2)+(2*(M/4)*2)+0][ kk+(uf -1)]*b[kk+(uf -1)][( idx *2)+(2*(N/4)*2)+1];

24
25 pBlock_c_310 += a[(idy *2)+(2*(M/4)*2)+1][ kk+0]*b[kk+0][( idx *2)+(2*(N/4)*2)+0];

26 pBlock_c_310 += a[(idy *2)+(2*(M/4)*2)+1][ kk+1]*b[kk+1][( idx *2)+(2*(N/4)*2)+0];

27 ..

28 pBlock_c_310 += a[(idy *2)+(2*(M/4)*2)+1][ kk+(uf -1)]*b[kk+(uf -1)][( idx *2)+(2*(N/4)*2)+0];

29
30 pBlock_c_311 += a[(idy *2)+(2*(M/4)*2)+1][ kk+0]*b[kk+0][( idx *2)+(2*(N/4)*2)+1];

31 pBlock_c_311 += a[(idy *2)+(2*(M/4)*2)+1][ kk+1]*b[kk+1][( idx *2)+(2*(N/4)*2)+1];

32 ...

33 pBlock_c_311 += a[(idy *2)+(2*(M/4)*2)+1][ kk+(uf -1)]*b[kk+(uf -1)][( idx *2)+(2*(N/4)*2)+1];

34 ...

35 }

36 }

37 ...

Listing 4.22: MxM running example: tiled loop unrolling and private scalars usage

both techniques easier, the code in Listing 4.22 being the result of such a combined

transformation.
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4.3.2. Optimization parameters

As the flowchart depicted in Figure 4.1 shows, the optimization process is driven

by a decision tree in which each branch implies a set of transformations to be

performed or not on the input AST. As Section 4.3.1 explains, these transforma-

tions affect multiple aspects of the kernel execution, and they are implemented in a

parametrized way. We now introduce those parameters grouped by the aspects they

directly affect.

First, the optimization parameters related to the workspace configuration are

listed in Table 4.2. Thus, both the number of threads that will be created and the

groups gathering these threads must be defined. The work is going to be distributed

equally among these threads in a block-cyclic basis, being consecutive and pure-

cyclic distributions sub-cases of this one that can be configured giving the block

sizes the proper values. Notice also that these global, local and block sizes can have

up to three dimensions, as they affect the workspace configuration of the kernel.

There is also an additional boolean flag to indicate whether the work distribution

loops must be totally unrolled. As commented in Section 4.3.1, performing this

unroll along with a proper selection of the values for the rest of the workspace-

related parameters may lead to a more efficient exploitation of the private memory

of the devices.

Another relevant property of a naive input kernel is how a single point of the

solution space of the problem is computed. That calculation is usually implemented

as one or more nested loops that iterate on both input and output memory struc-

tures. The parameters related to the optimization of this part of the code are shown

in Table 4.3. Thus, the optimizer is able to transform each one of these loops by

tiling it with some width, for which it must be provided with as many tile sizes as

nested computing loops the naive kernel has. Moreover, the innermost loop of that

nest can be unrolled too, this unroll factor being hence an additional optimization

parameter.

Finally, the local memory can be exploited when available by transforming the

kernel in the terms described in Section 4.3.1. The usage or not of the local memory

depends on the boolean parameter shown in Table 4.4. Let us insist on the fact that

this flag only commands the optimizer to apply or not this transformation. A glimpse
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of Table 4.1 from the aforementioned Section 4.3.1 shows that this optimization

depends indeed on the values given to the parameters related to both the workspace

configuration and the nested computing loops. Namely, that table defines the sizes

Name
Workspace dimensions

Explanation
1D 2D 3D

Global size
szx szx szx

Global workspace sizes. One value per di-
mension of the work-space.

- szy szy

- - szz

Local size
lszx lszx lszx

Local workspace sizes. One value per di-
mension of the work-space.

- lszy lszy

- - lszz

Block size
bszx bszx bszx

Block sizes for block-cyclic distribution.
One value per dimension.

- bszy bszy

- - bszz

Full block unrolling
Boolean indicating whether the work distri-
bution loops must be fully unrolled.

Table 4.2: Workspace-related parameters of the just-in-time optimizer

Name
Nested computing loops

Explanation
1 loop 2 loops 3 loops

Tile size
tW0 tW0 tW0

Tile sizes for the inner computing loops.
One value per each loop.

- tW1 tW1

- - tW2

Innermost loop unroll factor
Factor to unroll the innermost computing
loop. One single value.

Table 4.3: Computing loops-related parameters of the just-in-time optimizer

Name Explanation

Local memory usage
Boolean indicating if local memory has to be exploited
or not.

Table 4.4: Local memory-related parameters of the just-in-time optimizer
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of the local memory structures declared by this optimization, which depend on the

global, local, block and tile sizes.

4.3.3. Optimization heuristics

We have just described the parameters that drive the code transformations per-

formed during the just-in-time optimization process of a naive kernel. Such a

parametrized approach is clearly inspired in those followed to implement the op-

timizations applied by the tools presented in Chapters 2 and 3. In these two former

tools, either exhaustive or informed search methods were used to determine ade-

quate values for the optimization parameters on multiple target devices. Although

these algorithms were proven to be effective to find those values, the time they con-

sumed was too long to apply them in a just-in-time solution like the one introduced

in this chapter. Because of that, in this case we opt for defining some heuristics able

to provide values for the parameters of the optimizer without paying any search

time. Broadly speaking, these heuristics follow the basic guidelines for optimizing

codes in heterogeneous environments introduced at the beginning of Section 4.3.1,

although in some cases they are considerably affected by practical aspects such as

the implementation each vendor offers for the OpenCL standard.

The first strategy commands users to tune codes in order to maximize the parallel

execution with the purpose of achieving a maximum utilization of the processing

elements of the target device. Thus, theoretically in CPUs creating less threads

that do more work each is the best option, while in GPUs more but lighter threads

are preferred. Therefore, higher values are set for the global sizes in GPUs, usually

near to the naive ones, than in CPUs. The optimizer can infer the block sizes

from the values set for the global sizes. Regarding the local sizes, vendors generally

ask users to let the runtime decide them automatically. However, as mentioned in

Section 1.3 in relation to the the motivating example, the Intel OpenCL optimization

guide for their multicore CPUs recommends programmers to pack many GPU-like

threads into a same group and let the runtime use these groups to distribute the

workload among the cores available [51], and also to try other group sizes different

from that automatically set by the runtime.

The second strategy encourages an optimized exploitation of the memory hierar-
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chy of the devices, trying to maximize its data throughput. Virtually all the param-

eters driving the code transformations affect this optimization strategy. In GPUs,

the block sizes must be tuned in such a way that threads in a group can perform

coalesced accesses to global memory. The tiling technique is going to be applied

whenever possible, since a proper selection of values for the tile sizes is expected to

favor cache locality in CPUs, and they are also part of the parameters that drive

the local memory usage in GPUs. Focusing on local memory exploitation, the op-

timizer will be commanded to perform the associated code transformations if the

target device is a GPU. In this case, the optimizer will transform the code in order

to explicitly cache arbitrary data structures on the on-chip memory to which this

OpenCL region is usually mapped. At this point, values for the local, block and

tile sizes must be fixed taking into account that the threads in a group must be

able to collaboratively copy their slices of each structure in a coalesced way and,

of course, all these slices must also fit in the local memory. In CPUs, in turn, the

local memory region is usually mapped somehow to the cache levels of the processor,

which makes more advisable not to override its default management. Climbing up

the memory hierarchy, private memory exploitation also depends both on the global

and the block sizes, as well as on the tile size. With this optimization, results that in

the naive code are originally returned straight away to global memory, are written

first in private variables in order to reduce the memory contention. These variables

are mapped to processor registers. Thus, as the block sizes grow, it is more likely to

need more registers than available, a spilling problem arising then. By default, the

optimizer tries to allocate that private space as an array. However, as we noted when

this optimization was introduced, some device architectures and compilers do not

deal properly with such private memory allocations, mapping directly these arrays

to global memory even if the space required could fit in the registers available. The

full block unrolling option can be activated to overcome this issue, since when the

work distribution loop nest is fully unrolled the private space must be allocated as

a collection of single scalar variables. When the only pattern access detected for a

given structure in a naive kernel is SinglePat, it usually means that each individual

thread is updating a single position of this global memory structure, this situation

making the structure a candidate to be directly mapped to the private memory of

the device. As a consequence, only structures that are accessed following patterns

more complex than SinglePat are selected to be cached in local memory.
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Finally, the third strategy recommends to write high-level codes in such a way

that the instruction throughput of the processing elements is maximized. To achieve

this, the optimizer offers two loop unroll transformations. First, we have just in-

troduced the full block unroll flag, that was originally thought to tune the private

memory exploitation. However, activating it along with setting a proper block size

leads to an increase of the independent instructions available in the generated kernel,

and this should reveal multiple automatic optimization options for the underlying

OpenCL compiler. Second, there is also the option to unroll the innermost comput-

ing loop, although the factor applied in this case is limited by either the loop length,

or the tile size if that loop has been previously tiled. Moreover, notice that in GPUs,

and sometimes also in CPUs, global sizes may be left with their naive values, which

implies a value of 1 for the block sizes. If each thread computes one position of

the result, there are no work distribution loops to unroll. In these cases, such an

increase in the number of independent instructions can be achieved by unrolling the

innermost computing loop provided that the naive kernel had any.

Notice how all the parameters described somehow affect virtually all the code

transformations performed by the optimizer. Because of that, it is not uncommon

that values that maximize the benefits derived from one optimization may hamper

those achieved by another one, or even make illegal the application of the latter. For

instance, we have just seen how essential it is to find a trade-off between the values

set for the local, block and tile sizes when we try to exploit the local memory in a

GPU, since there are multiple related constraints affecting them. Thus, the values

cannot either exceed the workspace configuration limits of the device, or imply the

allocation of more local memory space than available, or hide coalescent accesses to

global memory data in order to cache them in the local memory structure allocated.

Such situations are not unfamiliar, as the validity conditions listed in Table 3.3 for

the matrix multiplication self-adaptive kernels remind. Nevertheless, the heuristics

described can be applied to obtain first a set of candidate parameter values for

different device types and, then, perform by hand a fine adjustment on these values

in order to find such balances, avoid illegal combinations and pin as far as possible

to both each problem properties and each device architecture. In the future we plan

to design some algorithms to fix them automatically.
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4.4. Experimental results

This section contains the validation of the effectiveness of our just-in-time op-

timizer. The purpose of this validation is to prove that the optimizer can generate

faster versions of a set of benchmarks for different types of platforms. The input ker-

nels used in this validation process are HPL single-point implementations for one-,

two-, and three-dimensional signal convolutions (1DCONV, 2DCONV, 3DCONV),

a Direct Coulomb Summation [108] (DCS3D), a matrix multiplication (MATMUL),

a single time step of an N-body simulation [1] (NBODY) and symmetric k- and

2k-rank update matrix operations (SYRK, SYR2K). 1DCONV and NBODY are de-

fined in one-dimensional workspaces, 2DCONV, MATMUL, SYRK and SYR2K have

two-dimensional workspaces and, finally, 3DCONV and DCS3D solution spaces have

three dimensions. Regarding the input naive kernels that implement these problems,

1DCONV, NBODY, DCS3D, MATMUL, SYRK and SYR2K naive versions consist

of a single inner computing loop, whereas 2DCONV and 3DCONV are computed

by a two-loop and a three-loop nest, respectively. Moreover, as Table 4.5 shows,

three different test classes named as “small” (S), “medium” (M) and “large” (L)

have been defined by setting different combinations of sizes for the global workspace

and the nested loops of each problem.

Optimized versions of these kernels have been generated running tests for the

aforementioned three size classes on three different computing platforms, namely a

CPU and two GPUs from different vendors:

CPU: A dual-socket system with two Intel Xeon E5-2660 Sandy Bridge with

eight 2.2Ghz cores each and Hyper-Threading (8 × 2 threads per processor,

for a total of 32) and 64 GB of RAM. Intel OpenCL driver version 1.2-4.5.0.8.

Single-precision theoretical peak performance of 563 GFLOPS.

Nvidia: An NVIDIA Tesla K20m with Kepler GPU architecture and 5 GB

GDDR5. NVIDIA OpenCL driver version 367.57. Single-precision theoretical

peak performance of 3524 GFLOPS.

AMD: An AMD FirePro S9150 with Hawaii GPU architecture and 16 GB

GDDR5. AMD OpenCL driver version 1702.3. Single-precision theoretical

peak performance of 5070 GFLOPS.
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Small (S) class Medium (M) class Large (L) class

Dimension
sizes

Computing

loops sizes
Dimension

sizes
Computing

loops sizes
Dimension

sizes
Computing

loops sizes

1DCONV 32768 32768 65536 65536 131072 131072

2DCONV 1024× 1024 256× 256 2048× 2048 256× 256 4096× 4096 256× 256

3DCONV 64× 64× 64 64× 64× 64 128× 128× 128 64× 64× 64 256× 256× 256 64× 64× 64

NBODY 32768 32768 65536 65536 131072 131072

DCS3D 64× 64× 64 4096 128× 128× 128 8192 256× 256× 256 16384

MATMUL 2048× 2048 2048 4096× 4096 4096 8192× 8192 8192

SYRK 2048× 2048 2048 4096× 4096 4096 8192× 8192 8192

SYR2K 2048× 2048 2048 4096× 4096 4096 8192× 8192 8192

Table 4.5: Size classification of test cases run in the experiments

Now, a brief explanation of the work that each kernel performs and the results

obtained after running their respective optimization test cases are discussed. Let us

start with the 1DCONV kernel, which implements the convolution of two unidimen-

sional signals of the same length that are stored in global memory. Each instance of

the naive kernel computes a point of the result iterating on one of the signals follow-

ing a 1D RadiusPat pattern, and following an 1D InnerPat pattern on the other

one. So, when local memory is exploited, these two input signals are selected to be

cached in local memory. The values provided to the optimization parameters to run

each test of this kernel are detailed in Table 4.6, which lists them in the same order

as Tables 4.2, 4.3 and 4.4 from Section 4.3.2. This way, the first parameters shown

are the sizes of the global and local workspaces. Then, the parameters related to the

grain adjustment are listed, namely the block sizes and whether its computing has

been fully unrolled or not. Regarding the nested computing loops, the widths set

to tile them are shown first, followed by the unroll factor applied to the innermost

one. The last parameter shown indicates whether the generated code tries to exploit

local memory or not. The columns are grouped by target platform, showing for each

one the parameter values set to run the tests for each size class. An N/A value for

a parameter means that the affected transformation is not applicable. Furthermore,

for the tile sizes and the innermost loop unroll factor, values of N/T (not tiled) and

N/U (not unrolled) respectively mean that these techniques have not been applied

despite being possible to do so. Table 4.7 contains the performance results obtained

by the versions generated using the aforementioned parameter values. Namely, it

shows, for each test case, the execution time of both the naive version and the
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optimized version generated, and the speedup obtained by the latter. Two addi-

tional times are shown in a separate group of rows inside the same table. The first

row of this group contains the time consumed by the whole optimization process,

which includes the building of an AST from a naive HPL kernel, the transformations

performed on the AST to obtain an optimized version, and the translation of this

optimized AST into an OpenCL kernel code. The second row of the group shows the

time consumed by the OpenCL runtime of the corresponding target device to build

an OpenCL program from the kernel code generated by the optimizer. The columns

in this table are grouped in the same way as those of Table 4.6. An analogous pair

of tables following the same layout will be also provided to support the discussion

of the results obtained for the rest of the kernels.

Due to the memory access patterns followed, the naive implementation of the

kernel suffers from an important memory access contention, as the threads are con-

tinuously accessing overlapping positions in global memory. Thus, the execution

times of the naive versions run in both GPUs do not seem to be as good as ex-

pected when compared to those obtained in the CPUs, taking into account the

the peak performances of each device. This issue seems to specially hamper the

performance of such cases in the Nvidia GPU. After applying the optimizations de-

tailed in Table 4.6, the performances obtained in both GPUs considerably increase,

Platform Nvidia AMD CPU

Size class S M L S M L S M L

Global sizes szx 32768 65536 131072 32768 65536 131072 32768 65536 131072

Local sizes lszx 256 256 256 256 256 256 32 32 32

Block sizes bszx 1 1 1 1 1 1 1 1 1

Full block unrolling N/A N/A N/A N/A N/A N/A N/A N/A N/A

Tile sizes tW0 128 256 512 1024 1024 1024 16 16 16

Innermost loop unroll factor 128 256 512 N/U N/U N/U N/U N/U N/U

Local memory usage TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE

Table 4.6: Optimization parameters set for 1DCONV

Platform Nvidia AMD CPU

Size class S M L S M L S M L

Naive kernel time (ms) 41.04 152.80 531.49 17.38 37.76 258.07 19.82 77.69 311.16

Optimized kernel time (ms) 7.87 29.22 110.23 3.81 12.92 40.46 11.72 46.14 184.15

Speedup 5.21 5.23 4.82 4.56 2.92 6.38 1.69 1.68 1.69

Code generation time (ms) 3.38 6.20 11.90 0.80 0.80 0.84 0.29 0.30 0.30

OpenCL compilation time (ms) 8.74 9.34 19.09 79.13 117.51 80.84 59.32 59.58 57.82

Table 4.7: Performance results obtained for 1DCONV
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as the aforementioned contention problems are mitigated by means of a previous

collaborative caching of the input signals in local memory. Regarding the CPU, a

proper selection of both the local workspace size and the width used to tile the inner

computing loop of the kernel is contributing to achieve slight improvements on the

performances obtained.

Let us note that for the AMD GPU and the Intel CPU platforms, the time con-

sumed by their respective OpenCL runtimes to compile the kernel codes generated

by the optimizer is considerably longer than the time the Nvidia runtime needed

to perform the same task, probably because more thorough code analyses are run

by the former two compilers. Moreover, sometimes these compilation times are sev-

eral orders of magnitude greater than the kernel times of some optimized versions.

However, in general, the larger the test size is, the larger the kernel times are and,

therefore, also the lower the impact of optimized code compilation is. Furthermore,

this is only a problem the first time a kernel is used in a program. As the flowchart

depicted in Figure 3.1 from Section 3.1.2 shows, HPL keeps caches in which both

OpenCL translations of kernels and their subsequent compiled programs are stored.

Platform Nvidia AMD CPU

Size class S M L S M L S M L

Global sizes
szx 1024 2048 4096 1024 2048 4096 1024 2048 4096

szy 1024 2048 4096 1024 2048 4096 1024 2048 4096

Local sizes
lszx 32 32 32 16 16 16 256 512 1024

lszy 32 32 32 16 16 16 1 1 1

Block sizes
bszx 1 1 1 1 1 1 1 1 1

bszy 1 1 1 1 1 1 1 1 1

Full block unrolling N/A N/A N/A N/A N/A N/A N/A N/A N/A

Tile sizes
tW0 32 32 32 32 32 32 N/T N/T N/T

tW1 32 32 32 32 32 32 N/T N/T N/T

Innermost loop unroll factor N/U N/U N/U 4 4 4 4 4 4

Local memory usage TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE

Table 4.8: Optimization parameters set for 2DCONV

Platform Nvidia AMD CPU

Size class S M L S M L S M L

Naive kernel time (ms) 1850 7364 29406 1169 5205 23675 1250 4990 19908

Optimized kernel time (ms) 432 1725 6883 315 1577 7068 761 3043 12184

Speedup 4.29 4.27 4.27 3.72 3.30 3.35 1.64 1.64 1.63

Code generation time (ms) 0.93 0.86 0.98 1.49 1.26 1.29 0.83 0.52 0.47

OpenCL compilation time (ms) 2.80 3.47 4.36 190 256 261 67 67 66

Table 4.9: Performance results obtained for 2DCONV
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Thus, the first time an HPL kernel is evaluated, both the OpenCL translation and

the OpenCL compiled program are cached, they being ready for further uses along

the same user application.

The 2DCONV kernel implements the convolution of a two-dimensional input

matrix with a filter of size 256 × 256. To compute a point of the filtered matrix,

the input is accessed from global memory following a 2D RadiusPat, whereas the

filter is traversed according to a 2D InnerPat pattern. Thus, both the input matrix

and the filter are selected to be cached in local memory when exploited. The values

selected for the optimization parameters in each test case of this kernel are detailed

in Table 4.8, whereas Table 4.9 shows the performance results obtained by the

original versions and the ones generated using those parameter values. Similar

issues to those suffered by the 1DCONV naive implementation arise in this case

when its performance on both GPUs is compared to that obtained on the CPU. The

optimizations listed in Table 4.8 were able to mitigate contention problems in GPUs,

and also to obtain again slight improvements on the performance on the CPU.

The 3DCONV kernel implements the convolution of a three-dimensional input

matrix with a 64 × 64 × 64 filter. To compute a point of the result, the input

is accessed from global memory following a 3D RadiusPat, whereas the filter is

traversed according to a 3D InnerPat pattern. Thus, both the input matrix and

the filter are selected to be cached in local memory when exploited. The values

used for the optimization parameters in each test case of this kernel are detailed

in Table 4.10, whereas Table 4.11 shows the performance results obtained by the

original versions and the ones generated using those parameter values. The issues

already commented for the 1DCONV and 2DCONV kernels also appear in this

problem, although now in the large test case the naive version is considerably slower

in the CPU than in both GPUs, probably because the CPU is not dealing well

with the memory structures that do not properly fit in the cache. Regarding the

optimized kernels, similar speedups to those obtained for the 2DCONV problem are

achieved now by optimizing the 3DCONV kernel in similar terms.

The NBODY kernel computes the gravitational interactions of a set of particles

randomly distributed in a three-dimensional space. Particle data are stored in a

one-dimensional array of float4 vectors, with each vector element containing the

(x, y, z) coordinates and the mass of a particle. Each instance of the naive kernel
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Platform Nvidia AMD CPU

Size class S M L S M L S M L

Global sizes

szx 64 128 256 64 128 256 64 128 256

szy 64 128 256 64 128 256 64 128 256

szz 64 128 256 64 128 256 64 128 256

Local sizes

lszx 32 32 32 16 16 16 64 128 256

lszy 8 8 8 8 8 8 1 1 1

lszz 2 2 2 2 2 2 1 1 1

Block sizes

bszx 1 1 1 1 1 1 1 1 1

bszy 1 1 1 1 1 1 1 1 1

bszz 1 1 1 1 1 1 1 1 1

Full block unrolling N/A N/A N/A N/A N/A N/A N/A N/A N/A

Tile sizes

tW0 8 8 8 8 8 8 N/T N/T N/T

tW1 8 8 8 4 4 4 N/T N/T N/T

tW2 8 8 8 2 2 2 N/T N/T N/T

Innermost loop unroll factor N/U N/U N/U N/U N/U N/U 4 4 4

Local memory usage TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE

Table 4.10: Optimization parameters set for 3DCONV

Platform Nvidia AMD CPU

Size class S M L S M L S M L

Naive kernel time (ms) 2251 14937 119205 1315 13185 121181 1269 10471 235243

Optimized kernel time (ms) 572 4542 36430 415 4570 40936 810 6899 202902

Speedup 3.94 3.29 3.27 3.17 2.89 2.96 1.57 1.52 1.16

Code generation time (ms) 1.30 1.34 1.33 1.94 1.91 1.96 0.62 0.64 0.67

OpenCL compilation time (ms) 2.99 3.45 9.64 155 182 212 89 90 96

Table 4.11: Performance results obtained for 3DCONV

calculates the acceleration experienced by a particle due to its interaction with the

whole system. Then, that acceleration is used to compute the new position and

speed of the associated particle. Notice that although particles are distributed in

a 3D space, the problem lies in traversing that one-dimensional vector array, which

follows a 1D InnerPat access pattern. This array is selected to be cached in the

local memory when exploited. The values set to the optimization parameters in each

test case of this kernel are detailed in Table 4.12, whereas Table 4.13 displays the

performance results. A distinctive characteristic of this benchmark compared to the

other unidimensional problems is that its code generation times are slightly longer,

particularly for the GPU test cases, the reason being the complexity of its compute

section and the high unroll factor applied. These two issues also seem to make the

AMD GPU OpenCL runtime to considerably increase the time it needs to compile

the kernels optimized for this device.

The DCS3D kernel computes the electrostatic potential of each position of a

three-dimensional grid due to the interactions of 4096 randomly distributed charged
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Platform Nvidia AMD CPU

Size class S M L S M L S M L

Global sizes szx 32768 65536 131072 32768 65536 131072 32768 65536 131072

Local sizes lszx 256 256 256 256 256 256 256 512 1024

Block sizes bszx 1 1 1 1 1 1 1 1 1

Full block unrolling N/A N/A N/A N/A N/A N/A N/A N/A N/A

Tile sizes tW0 64 64 64 256 256 256 N/T N/T N/T

Innermost loop unroll factor 64 64 64 64 64 128 N/U N/U N/U

Local memory usage TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE

Table 4.12: Optimization parameters set for NBODY

Platform Nvidia AMD CPU

Size class S M L S M L S M L

Naive kernel time (ms) 31.76 124.09 445.11 16.72 54.61 312.73 182.82 729.90 2879.99

Optimized kernel time (ms) 16.73 62.98 243.83 10.68 37.85 259.01 177.67 709.35 2838.30

Speedup 1.90 1.97 1.83 1.57 1.44 1.21 1.03 1.03 1.01

Code generation time (ms) 5.06 5.17 5.06 7.75 7.46 12.90 1.33 1.34 1.39

OpenCL compilation time (ms) 3.70 3.67 4.36 668 664 647 72.12 72.80 73.64

Table 4.13: Performance results obtained for NBODY

particles. Energy in each point of the grid depends on the (x, y, z) position and

the potential of each particle. Thus, the problem is defined in a three-dimensional

space, but the naive kernel traverses a float4 4096-particle array by means of a

single compute loop. That array is cached in GPU local memory since it is accessed

following a 1D InnerPat pattern. The values used for the optimization parameters

in each test case of this kernel are detailed in Table 4.14, whereas Table 4.15 contains

the associated performance results. Notice that particle properties in both NBODY

and DCS3D kernels are stored from the outset as float4 arrays, with each vector

packing the (x, y, z) particle position and the fourth coordinate representing either

mass or potential. This works as an optimization by itself, because it allows not

only to exploit vector instructions to compute the distances between particles but

also to get simultaneously the values for the aforementioned magnitudes. Moreover,

it seems that letting both the Intel OpenCL runtime exploit its work-item group-

ing capabilities and the device manage itself the cache hierarchy does not leave

much room for the optimizer to take advantage of any additional transformation.

Because of that, neither code generation nor OpenCL compilation times are given

in Table 4.15 for this device. The GPUs seem to tolerate much better than the

CPU the 1D InnerPat pattern followed by the naive kernels of both NBODY and

DCS3D problems, probably because such access pattern combined with a bszx of 1
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is allowing coalesced reads. Furthermore, an adequate definition of both the local

workspace and the width used to tile the compute loops leads to an optimized usage

of the local memory and, thus, to more significant speedups, specially for the Nvidia

GPU.

The MATMUL kernel performs a typical C = A×B matrix multiplication, both

A and B being suitable candidates to be cached in local memory when exploited.

The loop computing the dot product of a point of C in the naive kernel iterates on

both matrices following different patterns. Namely, matrix A is read by rows in a

2D RowPat pattern, whereas matrix B is read by columns in a 2D ColPat pattern.

According to the heuristics implemented in the optimizer, both structures are picked

to be cached in local memory when exploited. The values set for the optimization

parameters in each test case of this kernel are detailed in Table 4.16, whereas Ta-

ble 4.17 shows the performance results for this benchmark. The performance of the

versions generated for this MATMUL kernel are on average 2.01 times behind that of

the best ones obtained by the self-adaptive test case described in Section 3.4. How-

Platform Nvidia AMD CPU

Size class S M L S M L S M L

Global sizes

szx 64 128 256 64 128 256 64 128 256

szy 64 128 256 64 128 256 64 128 256

szz 64 128 256 64 128 256 64 128 256

Local sizes

lszx 64 128 256 32 32 32 AUTO AUTO AUTO

lszy 1 1 1 4 4 4 AUTO AUTO AUTO

lszz 1 1 1 2 2 2 AUTO AUTO AUTO

Block sizes

bszx 1 1 1 1 1 1 1 1 1

bszy 1 1 1 1 1 1 1 1 1

bszz 1 1 1 1 1 1 1 1 1

Full block unrolling N/A N/A N/A N/A N/A N/A N/A N/A N/A

Tile sizes tW0 128 256 512 512 512 512 N/T N/T N/T

Innermost loop unroll factor N/U N/U N/U N/U N/U N/U N/U N/U N/U

Local memory usage TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE

Table 4.14: Optimization parameters set for DCS3D

Platform Nvidia AMD CPU

Size class S M L S M L S M L

Naive kernel time (ms) 48.96 519.36 8294 13.92 367.57 8497 177.70 2841.17 45416

Optimized kernel time (ms) 16.23 248.56 3973 11.26 267.97 6886 177.70 2841.17 45416

Speedup 3.02 2.09 2.09 1.24 1.37 1.23 1.00 1.00 1.00

Code generation time (ms) 1.09 1.11 1.12 1.85 1.54 1.51 - - -

OpenCL compilation time (ms) 3.50 3.13 3.05 170 170 170 - - -

Table 4.15: Performance results obtained for DCS3D
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ever, code transformations, scope and capabilities differ in each solution. Regarding

the local memory exploitation, the self-adaptive kernel chooses among matrices A,

B, or both, to be cached. This just-in-time optimizer, however, implements a more

general approach, automatically selecting all the input structures following memory

access patterns more complex than SinglePat. Moreover, the self-adaptive kernel

also implements a quite optimized version of the matrix multiplication algorithm

that is able to explicitly vectorize, unroll and reorder the loops that compute in

private memory the dot product operations for each position of C. For the sake

of a broader scope, the just-in-time optimizer is agnostic about which particular

operation the compute section runs. Regarding the OpenCL compilation times of

the optimized versions tested for this problem, it is noticeable how the full unrolling

of the computation performed on the 32× 8 private memory variables led to such a

complex code that the Intel OpenCL runtime needed about 10 seconds to compile

it. Let us recall that thanks to the HPL kernels cache, this would be a problem only

the first time the code is generated and compiled.

The SYRK kernel performs the symmetric rank one update C = αAAT + βC,

the optimizer detecting a 2D RowPat access pattern for A. Thus, A is cached in lo-

Platform Nvidia AMD CPU

Size class S M L S M L S M L

Global sizes
szx 512 1024 2048 512 1024 2048 256 512 1024

szy 512 1024 2048 512 1024 2048 64 128 256

Local sizes
lszx 16 16 16 16 16 16 128 128 128

lszy 16 16 16 16 16 16 1 1 1

Block sizes
bszx 4 4 4 4 4 4 8 8 8

bszy 4 4 4 4 4 4 32 32 32

Full block unrolling TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

Tile sizes tW0 16 16 16 32 32 32 32 64 128

Innermost loop unroll factor 16 16 16 N/U N/U N/U N/U N/U N/U

Local memory usage TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE

Table 4.16: Optimization parameters set for MATMUL

Platform Nvidia AMD CPU

Size class S M L S M L S M L

Naive kernel time (ms) 244.48 3297 26364 226.45 2302 23737 351 16521 216742

Optimized kernel time (ms) 29.04 238 1915 18.19 156 1872 113 1011 7933

Speedup 8.42 13.86 13.77 12.45 14.82 12.68 3.09 16.35 27.32

Code generation time (ms) 11.26 11.29 11.29 4.17 4.14 4.14 32.23 32.67 31.80

OpenCL compilation time (ms) 3.42 3.57 3.91 159 157 164 10803 10806 10821

Table 4.17: Performance results obtained for MATMUL
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cal memory when this feature is exploited. The values selected for the optimization

parameters in each test case of this kernel are detailed in Table 4.18, whereas Ta-

ble 4.19 shows the performance results. In order to compute A×AT , each instance

of the naive implementation of the kernel must access simultaneously two rows of A.

The threads that compute a diagonal position just access a single row of A, but the

more the position computed by a given thread moves away from the diagonal, the

more the stride between the pair of rows of A read increases. Such reads from global

memory lead to quite unfriendly situations for GPUs, to the extent that the naive

kernel performs considerably worse in both GPUs than in the CPU. As commented,

when the naive kernel accesses columns of AT , it is accessing rows of A indeed, but

these accesses do not follow a 2D RowPat pattern exactly in the same terms as the

optimizer initially expects. Namely, in a pure 2D RowPat pattern the row dimen-

sion must be indexed using the idy global thread identifier, whereas in this case it

is being indexed using the idx one. However, the optimizer is also able to detect

such pattern variations and generate the code needed to copy to local memory an

additional slice gathering the positions of A read by these accesses. Thanks to this

extended caching mechanism, no global memory reads are performed by the inner

Platform Nvidia AMD CPU

Size class S M L S M L S M L

Global sizes
szx 512 1024 2048 512 1024 1024 256 512 1024

szy 512 1024 2048 512 1024 1024 2048 4096 8192

Local sizes
lszx 16 16 16 16 16 16 32 32 32

lszy 16 16 16 16 16 16 32 32 32

Block sizes
bszx 4 4 4 4 4 4 8 8 8

bszy 4 4 4 4 4 4 1 1 1

Full block unrolling TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

Tile sizes tW0 32 32 32 64 64 64 512 1024 2048

Innermost loop unroll factor 32 32 32 64 64 64 8 8 8

Local memory usage TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE

Table 4.18: Optimization parameters set for SYRK

Platform Nvidia AMD CPU

Size class S M L S M L S M L

Naive kernel time (ms) 2636 28463 379550 4096 33475 291594 444 3630 31035

Optimized kernel time (ms) 103 829 6637 51 663 6134 144 1149 12306

Speedup 25.55 34.32 57.19 80.30 50.46 47.54 3.08 3.16 2.52

Code generation time (ms) 22.14 22.31 22.44 58.04 58.84 59.50 4.35 4.59 4.53

OpenCL compilation time (ms) 12 12 36 994 1013 1049 177 177 175

Table 4.19: Performance results obtained for SYRK
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loop that computes A × AT , and thus considerable speedups are achieved in both

GPUs. In relation to the code generation process, notice how, for the test cases

in both GPUs, the complexity of some of the transformations applied, mainly the

combination of a 4× 4 block size and a high unroll factor of the innermost compute

loop, leads the optimizer to consume higher times to generate these kernels.

The SYR2K kernel performs a symmetric rank two update C = αABT +αBAT +

βC. The optimizer detects a 2D RowPat access twice, first for A when computing

A×BT , and also for B when B×AT is computed. Thus, both matrices are selected

to be cached in local memory. The values assigned to the optimization parameters in

each test case of this kernel are detailed in Table 4.20, whereas Table 4.21 shows the

performance results obtained. In order to perform A×BT and B×AT , each instance

of the naive implementation must perform strided accesses to a pair of rows from

both input matrices. This gives place to GPU-unfriendly situations quite similar to

those we have just described for the SYRK naive kernel. In this case, the optimizer

detects the transposed variations of the 2D RowPat patterns arisen when the kernel

reads AT and BT , and thus the code needed to cache two additional slices for the

positions of A and B read by these transposed accesses is generated. Since both the

Platform Nvidia AMD CPU

Size class S M L S M L S M L

Global sizes
szx 512 1024 2048 512 1024 2048 256 512 1024

szy 512 1024 2048 512 1024 2048 2048 4096 8192

Local sizes
lszx 16 16 16 16 16 16 32 32 32

lszy 16 16 16 16 16 16 32 32 32

Block sizes
bszx 4 4 4 4 4 4 8 8 8

bszy 4 4 4 4 4 4 1 1 1

Full block unrolling TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

Tile sizes tW0 32 32 32 32 32 32 64 128 256

Innermost loop unroll factor 32 32 32 32 32 32 8 8 8

Local memory usage TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE

Table 4.20: Optimization parameters set for SYR2K

Platform Nvidia AMD CPU

Size class S M L S M L S M L

Naive kernel time (ms) 10815 78807 756930 9494 92087 878013 968 11122 99757

Optimized kernel time (ms) 316 2551 20353 114 1554 16238 364 3399 36855

Speedup 34.21 30.89 37.19 82.98 59.27 54.07 2.66 3.27 2.71

Code generation time (ms) 38.39 39.09 39.00 55.35 54.88 54.48 7.10 7.43 7.39

OpenCL compilation time (ms) 12 13 33 1519 1444 1533 246 246 246

Table 4.21: Performance results obtained for SYR2K
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global memory issues and the solution applied to them are similar than those from

the SYRK kernel, the performance obtained by the versions of the current SYR2K

problem optimized for GPUs are also similar.

4.5. Conclusions

In Chapter 3 we described a mechanism to program performance-portable HPL

kernels that exploit the run-time code generation capabilities of the library. These

codes are able to generate several versions depending on the values given to a number

of optimization parameters. However, writing kernels in such a way requires a

considerable programming effort. Furthermore, the search algorithms needed to

find proper values for those parameters on a target device were found to be too

time-consuming to some extent. Thus, in this chapter we present a just-in-time

approach that intends to overcome these inconveniences.

This just-in-time optimizer is embedded in the workflow of HPL, which implies

relevant modifications in the way the library translates the kernels written in its

C++-based language into working OpenCL codes. Originally these translation pro-

cess was performed directly at run-time, whereas now the kernels are loaded in

an AST representation. Once the tree is ready, the optimizer can transform it by

applying common strategies to tune codes for heterogeneous devices. Finally, an

optimized OpenCL kernel is generated from the transformed AST. Namely, the op-

timizer is able to tile and unroll the compute loops, to cache shared data on the local

memory of the devices when available, to coarsen the granularity of the naive kernel,

and to reduce memory access contention by computing results in the private mem-

ory regions of the devices. Along their implementation, all these transformations

performed on the naive syntax tree emerged as interdependent. Moreover, this pool

of transformations is not usually applied as a whole, rather some optimizations are

more suitable than others depending on the device properties and the problem char-

acteristics. These two sets of constraints determined the order fixed in the workflow

to perform them. A set of parameters is defined to drive the optimization process,

and the values given to them determine which transformations are going to be ap-

plied and under which conditions. These parameters decide the sizes of the global

and the local workspaces, the tile widths for inner computing loops and an unroll
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factor for the innermost one, whether local memory is going to be exploited, the

private memory block size, and whether the computing performed over that region

must be fully unrolled. By setting different values for these parameters, the library

generates different versions from a same input code. Thus, when these values are

chosen taking into account the capabilities of a device, the version generated will be

optimized for it. By now, these values are fixed heuristically, trying to adapt those

general guidelines to optimize codes for heterogeneous platforms to the concrete

properties of each target device.

Naive implementations of eight different problems have been optimized for three

platforms: an Nvidia GPU, an AMD GPU and a multicore Intel CPU. Each naive

implementation has been tested in each platform for three different problem sizes:

small, medium and large. The optimizer generated versions with speedups from

1.83 up to 57.19 in the Nvidia GPU, from 1.21 to 82.98 in the AMD GPU and

up to 27.32 in the Intel CPU. In this latter device, the optimizer was not able to

generate versions faster than the baseline for the DCS3D problem. Moreover, the

optimization process showed to be quite lightweight, requiring just between 1 and

59 milliseconds to transform naive HPL kernels into OpenCL optimized codes. Such

code generation times can be considered negligible, specially for large test cases. In

turn, in some cases the OpenCL runtimes of both the AMD GPU and the Intel CPU

needed compilation times which can be several orders of magnitude greater than the

kernel times of the corresponding optimized versions, probably due to thorough code

analysis tasks being performed by the compilers on these codes. In relation to this

issue, we remind that since HPL stores the evaluated kernels in an internal cache,

once an optimized version is obtained, it can be reused without having to generate

and compile it again.

In the future we plan to implement some kind of algorithm able to select the op-

timization values by itself, which will automatically provide the performance porta-

bility. There are several sources from which knowledge for that algorithm could

be extracted and then encoded, such as heuristics based on the bibliography and

results obtained in prior experiments, micro-benchmarking, or analytical perfor-

mance models. This work can be also extended by enriching the optimization pool,

both making the current transformations more generic and by implementing other

well-known techniques, like explicit loop vectorization or enabling local memory
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exploitation to compute intermediate results.

4.6. Related work

As the name itself suggests, the main purpose of implementing just-in-time op-

timization capabilities in any programming solution is to reduce the time invested

in the generation of optimized versions. Multiple strategies are usually applied to

overcome this problem, ranging from previous processes of platform profiling to com-

plex algorithms that try to replicate the human expertise about code optimization.

Moreover, these programming frameworks also try to reduce as much as possible

the intervention of users in the optimization process. In a best-case scenario, the

framework can be simply fed with the code to optimize, but it is very common to ask

the users to give, at least, some light indications to guide the optimization process.

Also, as a consequence of the addition of such capabilities, it is also common that

these frameworks provide users with some kind of high-level programming interface

to interact, instead of having to write complex host codes like those of OpenCL.

This way, some approaches work as black boxes that just expect programs origi-

nally written in classic high-level languages like C, C++ or FORTRAN. This is the

case of a multi-objective auto-tuning framework developed by Jordan et al. [52] on

top of the Insieme [86] compiler infrastructure. This framework receives programs

written in C, C++, OpenMP, MPI, and OpenCL as inputs, and loads them into

an intermediate representation provided by the Insieme compiler. Then the code

is analyzed, which yields as outcomes both a number of regions susceptible to be

optimized and a set of feasible transformations to apply. As in our just-in-time opti-

mizer, these transformations depend on multiple parameters such as unroll factors,

tile sizes or the number of iterations to distribute among the threads. An iterative

algorithm based on evolutionary methods and search space pruning mechanisms

were purposely designed for this framework in order to find tuned configurations

for those parameters. Code versions are evaluated by running them on the target

device during the search process, which is performed just-in-time as a part of the

program compilation. The result is a number of configurations that are translated

by the compiler back-end into optimized code regions written in C, OpenCL or MPI

code, depending on the input. These specialized code regions are bundled into a
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multi-version executable, although the decision about the combination of regions to

run remains application-specific and could be forwarded to the user if needed.

Other tools rely on the functional portability provided by OpenCL and then try

to overcome its well-known performance portability gap by implementing code trans-

formations able to optimize OpenCL kernels in multiple ways. For instance, Fang et

al. propose Sesame [36], a performance-portable framework for OpenCL that gathers

a number of techniques derived from a comprehensive systematic study on the opti-

mization space for many-core devices performed by the authors. In that study they

evaluate the impact that a proper usage of the vector capabilities of processors [33]

or the local memory hardware usually included in many-core architectures [32] have

in the performance of OpenCL kernels. The memory access pattern classification

implemented in our just-in-time optimizer is based in this latter study. Regarding

the proper exploitation of local memory, they propose two tools that complement

each other: one enables local memory usage in OpenCL kernels [34], whereas the

other is able to rewrite OpenCL codes that already used local memory in a quite

architecture- or device-specific way [31]. The OpenCL code analysis and transforma-

tion operations performed by these tools are implemented by means of LLVM and

Clang. One of the future research directions they proposed to effectively implement

such a framework is to find a generic order to apply optimizations. The workflow

followed by our just-in-time optimizer tackles this issue.

By design, any heterogeneous programming framework that, like HPL, provides

its own high-level kernel language, must ask users to translate their codes into it.

Hence, the efforts made to alleviate the user intervention are commonly focused

on the optimization stages, either by taking charge of the whole process or, at

least, guiding the programmers along a feasible optimization path and helping them

to transform the input code. An example of this is Many-Core Levels (MCL), a

framework oriented to different kinds of many-core devices that was built by Hijma

et al. as an implementation of their stepwise-refinement for performance methodol-

ogy [46]. It is composed of the Many-Core Programming Language (MCPL), which is

an embedded language to write kernels, and a compiler able to improve these kernels

with optimizations with different levels of abstraction. These optimizations range

from general transformations usually applicable on many-cores to quite architecture-

specific tweaks, and they are presented to the user along an iterative process from
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the more general to the more specific. Thus, their compiler first proposes some

general optimizations and provides feedback about the potential performance they

can yield. Then, the programmer takes a decision according to that feedback and

commands the compiler to optimize the code. Depending on the transformations ap-

plied and the capabilities of the device, a different set of more specific optimizations

is presented. As the abstraction level of the optimizations decreases, the framework

might discharge on the programmer the transformation of the MCL kernel. At the

end of the process, this kernel is translated into OpenCL or C++ source code. Thus,

starting with a naive input kernel, this framework is able to follow different opti-

mization paths depending on the properties of both the problem and the device,

but user feedback is needed to some extent in each step forward. Our just-in-time

optimizer, in turn, only requires users to intervene at the beginning of the process,

since they must indicate the compute section in their naive input HPL kernels and,

by now, to perform manually a fine adjustment the optimization parameters.

Steuwer et al. propose in [103] a high-level functional language embedded in

Scala to implement simple problem descriptions. This forces the programmers not

only to rewrite their kernels but also to leap from the imperative to the functional

paradigm, which may result uncomfortable for the most inexperienced users. In

their framework, the authors include a set of rewrite rules based on λ-calculus that

must be properly combined and applied to optimize each input code. After that,

an optimized low-level expression composed of several primitives is obtained. These

primitives are mapped to parametrized routines that generate OpenCL snippets that

implement the operations the primitives represent. The parameter values passed to

those routines are used to specify OpenCL low-level details such as the global and

local workspaces sizes or vector lengths. Thus, at the end of the evaluation process,

an OpenCL code optimized according to the rules applied and the parameter values

passed to the primitives is obtained. Three consecutive exploration processes are

needed to generate optimized versions from an input code. First, search space of

general optimization rules is heuristically pruned by selecting just those that are

expected to perform well. Then, another heuristic is applied to prune the options to

implement such rules in OpenCL. Finally, the values for OpenCL primitive param-

eters are found by pruning again the search space and generating all the remaining

kernel versions. The authors followed this approach to implement a performance-

portable matrix multiplication, executing exhaustively all the generated OpenCL
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versions to test it on CPUs and on several desktop [92] and mobile GPUs [107].

There are also domain-specific programming frameworks that provide just-in-

time optimization capabilities. HALIDE [91] is a domain-specific language for im-

age processing that is built on top of C++. Halide programmers must describe a

high-level strategy to map image processing pipelined applications to heterogeneous

platforms. The compiler provided by the framework is in charge of generating the

code that implements that strategy, OpenCL being one of the supported back-ends

for GPU code. The process is driven by an iterative auto-tuner that performs a

genetic search to find an optimized schedule for a given user strategy. The config-

uration of each schedule defines the parameter values for the optimizations, which

include code transformations such as work distribution, vectorization or loop un-

rolling. In [73], the HALIDE development team presents a just-in-time version of

the original algorithm that encodes both a refined mechanism of function bounds

analysis for the parameters as well as additional human expertise.





Chapter 5

Conclusions

Heterogeneous computing platforms are ubiquitous nowadays. Such platforms

consist of different kinds of parallel devices, each including multiple processing ele-

ments that sometimes are of different nature. Architectural differences among these

devices are related not only to the capabilities of their processing elements, but also

to another details like the memory hierarchy organization. Some of these architec-

tures, like the x86-based multicore processors, intend to provide backwards compat-

ibility in relation to prior designs. Others propose novel approaches to extract paral-

lelism from existing devices, like the current GPUs, which became general-purpose

computing devices. There are also some proposals that try to take advantage of

the best features of both worlds. This way, devices such as the Intel Xeon Phi or

the Accelerated Processing Units (APUs) from AMD are able to run code originally

thought for traditional CPUs, but providing at the same time the massively data

parallel capabilities of GPUs. Such a variety of architectural designs from different

vendors gave place to multiple solutions to program these devices. Some of these

solutions were specifically devoted to a single device type from a particular vendor,

such as CUDA, created by NVIDIA to exploit the parallel capabilities of its GPUs.

Other solutions, however, tried to cover a wider range of device types, which turned

them into real heterogeneous programming frameworks. For example, the OpenMP

standard was born as a directive-based approach to extract parallelism in shared

memory systems. However, since its 4.0 version it can be also used to decompose

an existing program in multiple tasks and offload them onto the several devices

179
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available in any heterogeneous system. The OpenACC initiative also followed this

directive approach to provide a similar solution.

Both OpenMP 4.0 and OpenACC offer code portability as far as the user-

annotated code remains the same no matter the devices on which it will be run.

However, the directives added on top of the code must be modified in order to

choose the target devices and to adapt the work decomposition to the underlying

platform. In this context, the OpenCL standard proposes a different programming

model based on kernels that can be run in any device supporting the standard, and

a host code that defines the environment to run them. These host programs are

written by means of an API that exposes some low-level details that may be a bit

cumbersome for inexperienced users. Such a trade-off leads to the eruption of mul-

tiple proposals to program heterogeneous systems that are built on top of OpenCL,

some of them also trying to improve its programmability by hiding these details

to the users. An example of the latter is the Heterogeneous Programming Library

(HPL), on which some of the tools developed in this thesis are based.

There is no doubt that functional portability is one of the strengths of OpenCL

but, unfortunately, architectures and capabilities differ among devices, so that an

OpenCL program is often not performance-portable straightaway. However, there

are some general strategies that can be followed to tune an OpenCL kernel for

different devices: maximize the number of running threads, optimize the usage of

the several levels of the memory hierarchy, and reveal situations that may lead

to the extraction of instruction-level parallelism. There are multiple parametrized

transformations that, when applied to codes, make them follow these strategies. The

parameter values will vary depending on the device targeted. The tools developed in

the context of this PhD thesis generate optimized OpenCL codes for several kinds of

devices by applying such parametrized techniques and implementing multiple search

procedures to set proper values for those parameters.

The rest of this chapter is devoted firstly to reminding how the tools developed

implement these approaches and, thus, how they contribute to improve performance

portability in heterogeneous systems, and then to describing some feasible future

research directions for each one.
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OCLOptimizer

The first solution we describe is OCLoptimizer, a source-to-source optimizer

for OpenCL codes built on top of the LLVM-Clang compiler infrastructure. The

inputs of the optimizer are a configuration file and a kernel annotated with indi-

cations on the optimizations to try. The outputs are a host code suitable for the

input kernel, an optimized workspace configuration and a kernel properly tuned

for the platform where the tool is executed. The tool implements search processes

driven by the execution times of kernels to find both the optimized workspaces and

the optimized kernel versions. The search of an optimized workspace can be either

exhaustive, taking into account the whole set of legal combinations of parameters,

or guided by a genetic algorithm (GA). Regarding the kernels, users can annotate

the loops in their kernels to try different factors to unroll them. Depending on the

number of loops annotated and the range of factors set for each loop, a combinatorial

explosion can occur when generating the search space for the kernel optimization

process. Because of that, the exhaustive algorithm followed to search an optimized

workspace is replaced here with a breadth-first search (BFS) that processes the di-

rectives one by one. A genetic search was implemented also, each individual tested

by the algorithm being a combination of unroll factors for all the directives. The

code analysis and transformation operations needed to optimize kernels are built on

top of the LLVM-Clang compiling infrastructure.

The tool is also able to optimize applications composed of several kernels, al-

though in this case the workflow it follows varies depending on how the kernels are

related each other. There are applications whose kernels are totally independent

and they can be run in workspaces with different configurations. In such cases, the

tool launches as many independent optimization processes as kernels are included in

the application. Because of that, the user has to write each kernel in its own file and

extract from the host code of the original application all the information needed to

configure each process. Since several independent optimization process are launched,

the outputs are the respective optimized workspace configurations and kernel ver-

sions for each input code. The user must merge back the optimized kernels into the

application, and also modify it to apply the optimized workspace configurations.

Nevertheless, when the kernels in the application are interdependent to some ex-

tent, it is quite usual that kernels must run on a common workspace. Moreover,
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sometimes these applications are built in such a way that a given kernel produces

intermediate results that must be used as inputs by another one. In such cases, the

workflow of the tool is divided into three stages. First, an optimized workspace con-

figuration is obtained for each kernel separately. One of the constraints being that

all the kernels must run on the same workspace, all these workspace configurations

are valid candidates to be selected as the optimized one. Thus, in a second step, op-

timized versions of all the kernels are generated using each workspace configuration

candidate. Finally, the fastest combination of a candidate workspace configuration

and their corresponding optimized kernels is returned as the output of the whole

application optimization process. Again, the user is required to merge back the

optimized kernels into the application and also to modify it in order to apply the

optimized workspace configuration selected.

The performance of the tool was evaluated in a CPU, a GPU and an Intel

Xeon Phi accelerator. This validation showed that OCLoptimizer successfully tunes

single and multiple kernel OpenCL codes for the different platforms. Regarding

single kernel OpenCL codes, the achieved speedup was 2.22 when using the GA in

the workspace and kernel code search processes and 2.86 when using ES+BFS, but

the searches guided by the GA were about ten times faster than those guided by

ES+BFS. Focusing on ES+BFS, the average speedups achieved were respectively

1.59, 2.54 and 4.46 for CPU, GPU and Xeon Phi, which shows that all the platforms

benefit from the usage of the tool. Support for codes composed of several kernels was

validated using the SNU NPB IS benchmark in CPU and GPU, achieving speedups

of 2.45 for CPU and 1.19 for GPU. No tests were run for the Xeon Phi as the SNU

NPB suite does not have an implementation specially optimized for this device.

Self-adaptive HPL kernels

This is the first solution of the two based on the Heterogeneous Programming

Library (HPL) developed in this PhD thesis. Namely, this tool follows a generic

programming approach to implement self-optimizing HPL codes by exploiting the

run-time code generation capabilities of the library. A remarkable result of this

work is the description of a collection of techniques to generate performance-portable

versions of an HPL code, and a set of parameters that drive the application of such

techniques.
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This way, kernels with different work granularities can be generated by giving

values to global and local workspaces and iteration block sizes. Loops can be tiled

with a given tile size or unrolled to some factor, and if they are nested, different

orders and schedules can be tried for their instructions. Moreover, the generation

of different snippets of code can be driven by any given condition. For instance,

different algorithms can be used depending on the type of the target device, or

different data structures can be chosen to be cached in slices in local memory. In

this last situation the code selection mechanism would be used several times, since

multiple code snippets would have to be toggled or replaced along the kernel. This

is the case of the declarations of local memory structures, the copy of slices from

global to local memory or the new accesses to local memory replacing the old ones.

We used these parametrized optimizations as building blocks to write a generic

HPL kernel tunable by means of a dozen of parameters for a matrix multiplication.

The search of best values for these parameters is driven by a genetic algorithm con-

figured in a way similar to that of OCLoptimizer. Due to legality reasons and also

in order to narrow the search space, different ranges and inter-dependent conditions

were set for the values that these parameters can take. By properly choosing these

constraints, the time consumed by the search algorithm decreases considerably with

no loss in the quality of the optimized version generated. This strategy of pro-

gramming self-adaptive kernels by means of the HPL embedded language is feasibly

adaptable to other problems different from the matrix multiplication.

The performance of this use case was evaluated in an NVIDIA GPU, an AMD

GPU, a multicore Intel CPU and an Intel Xeon Phi accelerator, and it was compared

to two state-of-the-art OpenCL adaptive implementations of the matrix product,

namely, clBLAS and ViennaCL. The average speedup of our implementation was

1.74 respect to clBLAS, and 1.44 respect to ViennaCL. In terms of search time, our

genetic algorithm was on average 1.18 times faster than the clBLAS profiling, and

160 times faster than the exhaustive search performed by ViennaCL.

HPL-embedded just-in-time optimizer

The implementation of self-adaptive kernels by means of the run-time code gen-

eration capabilities of HPL, in the terms it is proposed in Chapter 3, may result
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quite low-level and verbose for users with elementary programming skills. Thus, the

just-in-time optimizer for HPL was designed having them mind. Since the frame-

work is built on top of OpenCL, both the programming and the execution of HPL

kernels are also defined in terms of work-items running in a workspace. To exploit

this tool, users have to map a problem to such a workspace and write a naive HPL

kernel that computes a single point of it. The optimizer, which is embedded into

the workflow of the library, analyses the code of the input kernel and generates

just-in-time an optimized version for a target device. This approach simplifies con-

siderably the task of programming a self-adaptive HPL kernel, since now a naive

implementation is able to eventually give place to multiple versions.

The analysis and transformation tasks involved are performed on an abstract

syntax tree (AST) on which the input kernel is previously loaded. This forced to

modify the original OpenCL code generation mechanism of HPL in order to store the

components of the parsed expressions in the nodes of our own tree-shaped composite

class hierarchy, instead of translating them directly into their OpenCL equivalent

string. Each node is required to implement a method that generates its OpenCL

equivalent. Thus, if such a method is invoked for the root node, eventually the

whole tree is recursively translated into a full OpenCL kernel. Once generated, this

intermediate representation is enriched with information about the different memory

access patterns followed by the kernel.

This design allowed to implement several optimization techniques as tree trans-

formations. These techniques were defined according to well-known optimization

strategies for heterogeneous devices. Namely, the optimizer is able to tile and unroll

to some extent the compute loops, to cache shared data in the local memory of

the devices when available, to coarsen the granularity of the naive kernel, and to

reduce memory access contention by computing results in the private memory of the

devices. Since they are inter-dependent, these transformations are applied following

an order that was experimentally fixed. Moreover, all of them depend on a set of

parameters. The values given to those parameters decide which transformations and

under which conditions they are going to be applied. Namely, these parameters are

used to determine the sizes of workspaces, the tile widths for the inner computing

loops, the unroll factor for the innermost one, whether local memory is going to be

exploited, the private memory block size, and whether the space for this block is
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allocated as an array or as a set of private variables. When this latter allocation

method is chosen, the computation performed in this private memory space is also

fully unrolled. By setting different values, the library generates different versions

from a same input code.

When the parameter values are chosen taking into account the capabilities of a

device, the version generated will be tuned to some extent for it. By now, the values

are heuristically fixed trying to map the aforementioned optimization guidelines

to the properties of each target device. Naive implementations of eight different

problems were optimized for three platforms, an Nvidia GPU, an AMD GPU and

a multicore Intel CPU. The optimizer generated versions with speedups from 1.83

up to 57.19 in the Nvidia GPU, from 1.21 to 82.98 in the AMD GPU and up to

27.32 in the Intel CPU. In this latter device, the optimizer was not able to generate

versions faster than the baseline for the DCS3D problem. Moreover, the optimization

process showed to be quite lightweight, requiring just between 1 and 59 milliseconds

to transform naive HPL kernels into OpenCL optimized codes. This cost is further

amortized across several kernel executions, as it must be noted that HPL stores the

kernels generated in an internal cache. Thus, once an optimized version is obtained

in an application, it can be reused without generating it again. These results show

that, by means of a set of heuristically driven parametrized transformations, the

embedded optimizer is able to take HPL naive kernels and generate, automatically

and just-in-time, OpenCL versions of them tuned for different platforms.

5.1. Future work

The three tools developed in this PhD thesis have been proven to provide perfor-

mance portability both to OpenCL and to HPL, since they were able to take input

codes and generate tuned versions of them for different platforms. In all cases, the

optimization processes consisted in applying parametrized techniques, the search of

optimized values for the associated parameters being one of the most challenging

issues addressed. The strategies implemented in OCLoptimizer and in the current

approach to the self-adaptive HPL kernels explore the search space of these param-

eter values by generating and executing the codes of the corresponding versions,

which makes them very-time consuming. This condition is particularly severe for
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the exhaustive methods, since they visit all the search space, but it may be also

troublesome for the informed ones, namely in their first steps, because these earlier

kernels usually have quite long execution times. Thus, an interesting future research

work for both tools would be the study of alternative ways to evaluate versions either

with no real code execution, such as inferring their performance by means of ana-

lytical models, or by performing shortened runs from which a performance profile

could be extracted. In relation to the the heuristics proposed for the HPL just-in-

time optimizer, they follow some well-known recommendations for optimizing codes

for heterogeneous devices that are effective to some extent, but they also have the

drawback of being too general. Thus, one of the main future research efforts in

relation to this tool will be devoted to improve these heuristics thoroughly.

The parametrized optimization techniques on which the matrix multiplication

self-adaptive kernel is based were implemented using the run-time code generation

(RTCG) capabilities of HPL. Namely, in this first approach the kernel was made self-

adaptive by including on it verbose HPL code snippets that exploit such capabilities

to generate different versions in run-time. Such low-level implementations of the

parametrized optimization techniques could be encapsulated into C++ classes which

offer the programmer a much more affordable high-level semantics and syntax. These

classes would implement both optimization abstractions to make the incorporation

of the techniques in the kernels easier, and search abstractions providing an interface

to define optimization parameters and to choose among different search algorithms

to find tuned values for these parameters. Furthermore, looking for more candidate

problems from other domains to follow this approach would reveal a couple of future

research directions. First, the study of a wider range of problems will likely lead us

to identify more optimizations that might be implemented in HPL using the RTCG

approach. Some of the new optimizations that might be found in this study could

be also implemented for OCLoptimizer. Second, many problems are usually solved

by means of iterative pipelined algorithms, each step of them being implemented

with a single kernel. The possibility of embedding some kind of online optimization

training arises in these cases, as different combinations of values for the parameters

could be tested and refined during the iterations of the algorithm.

Regarding the set of techniques applied by the HPL-embedded just-in-time op-

timizer, it could grow by deriving new optimizations from others already included
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on it. For instance, the loop vectorization could be implemented on top of the un-

rolling technique. Some techniques already implemented can be extended too. For

example, the mechanism that selects the structures to be sliced and copied in local

memory could be enhanced to take into account the local memory space available

in the device. Depending on the memory access pattern detected on the structures

copied, the addition of this constraint could imply variations in the sizes of the local

workspace and the iterations block or in the compute loop tile width, among other

parameters. This may help to find a balanced application of the affected techniques

that maximizes the overall benefit obtained from all of them. Furthermore, as for

OCLoptimizer and the RTCG approach, the study of a wider range of problems

will likely lead us also to identify more optimizations to enrich the set of techniques

included in the just-in-time optimizer.
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J. Labarta. Productive programming of gpu clusters with ompss. In 2012 IEEE

26th International Parallel and Distributed Processing Symposium, pages 557–

568, May 2012.

[15] C. Cao, J. Dongarra, P. Du, M. Gates, P. Luszczek, and S. Tomov. clMAGMA:

High performance dense linear algebra with OpenCL. In International Work-

shop on OpenCL (IWOCL), pages 13–14, 2013.

http://infocenter.arm.com/help/topic/com.arm.doc.100614_0300_00_en/arm_mali_gpu_opencl_developer_guide_100614_0300_00_en.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.100614_0300_00_en/arm_mali_gpu_opencl_developer_guide_100614_0300_00_en.pdf


BIBLIOGRAPHY 191

[16] J. Cavanagh. Digital Design and Verilog HDL Fundamentals. CRC Press,

Inc., Boca Raton, FL, USA, 1st edition, 2008.

[17] N. Chaimov, B. Norris, and A. Malony. Toward multi-target autotuning for

accelerators. In Parallel and Distributed Systems (ICPADS), 2014 20th IEEE

International Conference on, pages 534–541, Dec 2014.

[18] C.J. Newburn and B. So and Z. Liu and M.D. McCool and A.M. Ghuloum

and S. Du Toit and Z-G. Wang and Z. Du and Y. Chen and G. Wu and P.

Guo and Z. Liu and D. Zhang. Intel’s array building blocks: A retargetable,

dynamic compiler and embedded language. In 9th IEEE/ACM Intl. Symp. on

Code Generation and Optimization (CGO 2011), pages 224–235, 2011.

[19] clBLAS. https://github.com/clMathLibraries/clBLAS, 2015. [Online; ac-

cessed 16-February-2017].

[20] K. Daloukas, C. D. Antonopoulos, and N. Bellas. GLOpenCL: OpenCL sup-

port on hardware- and software-managed cache multicores. In Proce. 6th Intl.

Conf. on High Performance and Embedded Architectures and Compilers, pages

15–24, 2011.

[21] U. Dastgeer, J. Enmyren, and C. W. Kessler. Auto-tuning SkePU: a multi-

backend skeleton programming framework for multi-GPU systems. In Proc.

4th Intl. Workshop on Multicore Software Engineering, IWMSE ’11, pages

25–32, 2011.

[22] R. Dolbeau, F. Bodin, and C. de Verdiere. One OpenCL to rule them all?,

2013.

[23] P. Du, R. Weber, P. Luszczek, S. Tomov, G. Peterson, and J. Dongarra.

From CUDA to OpenCL: Towards a performance-portable solution for multi-

platform GPU programming. Parallel Computing, 38(8):391–407, Aug 2012.

[24] W. Engel. ShaderX2: Introductions & Tutorials with DirectX 9. Wordware

Pub., 2004.

[25] J. Enmyren and C. W. Kessler. SkePU: A Multi-backend Skeleton Program-

ming Library for multi-GPU Systems. In Proceedings of the Fourth Interna-

https://github.com/clMathLibraries/clBLAS


192 BIBLIOGRAPHY

tional Workshop on High-level Parallel Programming and Applications, pages

5–14, 2010.

[26] J. F. Fabeiro, D. Andrade, and B. B. Fraguela. OCLoptimizer: An iterative

optimization tool for OpenCL. In Proc. Intl. Conf. on Computational Science

(ICCS 2013), pages 1322–1331, 2013.

[27] J. F. Fabeiro, D. Andrade, and B. B. Fraguela. Writing a performance-portable

matrix multiplication. Parallel Computing, 52:65–77, 2016.

[28] J. F. Fabeiro, D. Andrade, B. B. Fraguela, and R. Doallo. Writing self-adaptive

codes for heterogeneous systems. In Proc. 20th Intl. Conf. Euro-Par 2014

Parallel Processing, pages 800–811, 2014.

[29] J. F. Fabeiro, D. Andrade, B. B. Fraguela, and R. Doallo. Automatic genera-

tion of optimized OpenCL codes using OCLoptimizer. The Computer Journal,

58(11):3057–3073, Nov 2015.

[30] J. F. Fabeiro, D. Andrade, B. B. Fraguela, and R. Doallo. How to Write

Performance Portable Codes using the Heterogeneous Programming Library.

In 19th Workshop on Compilers for Parallel Computing, CPC 2016, July 2016.

[31] J. Fang, H. Sips, P. Jaaskelainen, and A. L. Varbanescu. Grover: Looking for

performance improvement by disabling local memory usage in opencl kernels.

In 2014 43rd International Conference on Parallel Processing, pages 162–171,

Sept 2014.

[32] J. Fang, H. J. Sips, and A. L. Varbanescu. Aristotle: A performance impact

indicator for the OpenCL kernels using local memory. Scientific Programming,

22(3):239–257, 2014.

[33] J. Fang, A. L. Varbanescu, X. Liao, and H. J. Sips. Evaluating vector data

type usage in OpenCL kernels. Concurrency and Computation: Practice and

Experience, 27(17):4586–4602, 2015.

[34] J. Fang, A. L. Varbanescu, J. Shen, and H. Sips. ELMO: A User-Friendly API

to Enable Local Memory in OpenCL Kernels. In 2013 21st Euromicro Inter-

national Conference on Parallel, Distributed, and Network-Based Processing,

Feb 2013.



BIBLIOGRAPHY 193

[35] J. Fang, A. L. Varbanescu, and H. Sips. An Auto-tuning Solution to Data

Streams Clustering in OpenCL. In Computational Science and Engineering

(CSE), 2011 IEEE 14th International Conference on, Aug 2011.

[36] J. Fang, A. L. Varbanescu, and H. Sips. Sesame: A User-Transparent Opti-

mizing Framework for Many-Core Processors. In 2013 13th IEEE/ACM In-

ternational Symposium on Cluster, Cloud, and Grid Computing, pages 70–73,

May 2013.

[37] B. B. Fraguela, M. G. Carmueja, and D. Andrade. Optimal Tile Size Selection

Guided by Analytical Models. In Parallel Computing (ParCo), pages 565–572,

2005.

[38] B. B. Fraguela, Y. Voronenko, and M. Püschel. Automatic Tuning of Discrete
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[57] A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih. Py-

CUDA and PyOpenCL: A Scripting-Based Approach to GPU Run-Time Code

Generation. Parallel Computing, 38(3):157–174, 2012.

[58] K. Komatsu, K. Sato, Y. Arai, K. Koyama, H. Takizawa, and H. Kobayashi.

Evaluating performance and portability of OpenCL programs. In Proc. Fifth

Intl. Workshop on Automatic Performance Tuning (iWAPT 2010), June 2010.

[59] J. Kurzak, S. Tomov, and J. Dongarra. Autotuning GEMM kernels for

the Fermi GPU. IEEE Transactions on Parallel and Distributed Systems,

23(11):2045–2057, Nov 2012.

[60] Q. Lan, C. Xun, M. Wen, H. Su, L. Liu, and C. Zhang. Improving performance

of GPU specific OpenCL program on CPUs. In Proc. 13th Intl. Conf. on Par-

allel and Distributed Computing, Applications and Technologies (PDCAT’12),

pages 356–360, 2012.

[61] C. Lattner. LLVM. In A. Brown and G. Wilson, editors, The Architecture

of Open Source Applications: Elegance, Evolution and a Few Fearless Hacks.

Creative Commons, 2011.

https://www.opengl.org/registry/doc/GLSLangSpec.Full.1.10.59.pdf
https://www.opengl.org/registry/doc/GLSLangSpec.Full.1.10.59.pdf
https://www.khronos.org/registry/cl/specs/opencl-1.0.pdf


196 BIBLIOGRAPHY

[62] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program

analysis & transformation. In Proc. 2004 Intl. Symp. on Code Generation and

Optimization (CGO’04), pages 75–86, Palo Alto, California, Mar 2004.

[63] O. S. Lawlor. Embedding OpenCL in C++ for Expressive GPU Programming.

In Proceedings of 1st International Workshop on Domain-Specific Languages

and High-Level Frameworks for High Performance Computing, May 2011.

[64] T. Lutz, C. Fensch, and M. Cole. PARTANS: An Autotuning Framework for

Stencil Computation on Multi-GPU Systems. ACM Transactions on Archi-

tecture and Code Optimization, 9(4):59:1–59:24, January 2013.

[65] A. Mametjanov, D. Lowell, C.-C. Ma, and B. Norris. Autotuning stencil-

based computations on GPUs. In Proc. 2012 IEEE Intl. Conf. on Cluster

Computing, pages 266–274, 2012.

[66] W. R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard. Cg: A System for

Programming Graphics Hardware in a C-like Language. ACM Trans. Graph.,

22(3):896–907, July 2003.

[67] R. Marques, H. Paulino, F. Alexandre, and P. D. Medeiros. Algorithmic

skeleton framework for the orchestration of gpu computations. In Euro-Par

2013 Parallel Processing: 19th International Conference, Aachen, Germany,

August 26-30, 2013. Proceedings, pages 874–885, Berlin, Heidelberg, 2013.

Springer Berlin Heidelberg.

[68] K. Matsumoto, N. Nakasato, and S. Sedukhin. Implementing a code generator

for fast matrix multiplication in OpenCL on the GPU. In 2012 IEEE 6th Intl.

Symp. on Embedded Multicore Socs (MCSoC), pages 198–204, Sept 2012.

[69] K. Matsumoto, N. Nakasato, and S. Sedukhin. Performance tuning of matrix

multiplication in OpenCL on different GPUs and CPUs. In High Performance

Computing, Networking, Storage and Analysis (SCC), 2012 SC Companion:,

pages 396–405, Nov 2012.

[70] Message Passing Interface Forum. MPI: A Message-Passing Interface Stan-

dard, Version 1.0, June 1994.



BIBLIOGRAPHY 197

[71] N. Moore, M. Leeser, and L. Smith King. VForce: An environment for portable

applications on high performance systems with accelerators. J. Parallel Dis-

trib. Comput., 72(9):1144–1156, 2012.

[72] V. M. Morales, P. H. Horrein, A. Baghdadi, E. Hochapfel, and S. Va-

ton. Energy-efficient FPGA implementation for binomial option pricing using

OpenCL. In 2014 Design, Automation Test in Europe Conference Exhibition

(DATE), pages 1–6, March 2014.

[73] R. T. Mullapudi, A. Adams, D. Sharlet, J. Ragan-Kelley, and K. Fatahalian.

Automatically Scheduling Halide Image Processing Pipelines. ACM Trans.

Graph., 35(4):83:1–83:11, July 2016.

[74] S. Muralidharan, M. Shantharam, M. Hall, M. Garland, and B. Catanzaro.

Nitro: A framework for adaptive code variant tuning. In Parallel and Dis-

tributed Processing Symposium, 2014 IEEE 28th International, pages 501–512,

May 2014.

[75] T. Ngo, L. Snyder, and B. Chamberlain. Portable Performance of Data Parallel

Languages. In Proceedings of the 1997 ACM/IEEE Conference on Supercom-

puting, pages 1–20, 1997.

[76] R. V. Nieuwpoort and J. W. Romein. Correlating radio astronomy signals

with many-core hardware. International Journal of Parallel Programming,

39(1):88–114, 2011.

[77] M. J. Norton. Spells of Fury: Building Windows 95 Games Using Directx 2.

Sams, Indianapolis, IN, USA, 1996.

[78] C. Nugteren and V. Codreanu. CLTune: A Generic Auto-Tuner for

OpenCL Kernels. In 2015 IEEE 9th International Symposium on Embedded

Multicore/Many-core Systems-on-Chip, pages 195–202, Sept 2015.

[79] NVIDIA Corporation. NVIDIA Accelerated Computing: OpenCL. https:

//developer.nvidia.com/opencl. [Online; accessed 19-December-2016].

[80] NVIDIA Corporation. CUDA Compute Unified Device Architecture, Ver-

sion 1.0. http://developer.download.nvidia.com/compute/cuda/1.0/

https://developer.nvidia.com/opencl
https://developer.nvidia.com/opencl
http://developer.download.nvidia.com/compute/cuda/1.0/NVIDIA_CUDA_Programming_Guide_1.0.pdf
http://developer.download.nvidia.com/compute/cuda/1.0/NVIDIA_CUDA_Programming_Guide_1.0.pdf
http://developer.download.nvidia.com/compute/cuda/1.0/NVIDIA_CUDA_Programming_Guide_1.0.pdf


198 BIBLIOGRAPHY

NVIDIA_CUDA_Programming_Guide_1.0.pdf, July 2008. [Online; accessed 11-

December-2016].

[81] NVIDIA Corporation. CUDA C Programming Guide. NVIDIA Corporation,

2013.

[82] OpenACC-Standard.org. The OpenACC Application Programming Interface,

Version 2.5. http://www.openacc.org/sites/default/files/OpenACC_

2pt5.pdf, October 2015. [Online; accessed 9-December-2016].

[83] OpenMP Architecture Review Board. OpenMP Fortran Application Program-

ming Interface, Version 1.0. http://www.openmp.org/wp-content/uploads/

fspec10.pdf, October 1997. [Online; accessed 11-December-2016].

[84] OpenMP Architecture Review Board. OpenMP C and C++ Application

Programming Interface, Version 1.0. http://www.openmp.org/wp-content/

uploads/cspec10.pdf, October 1998. [Online; accessed 11-December-2016].

[85] OpenMP Architecture Review Board. OpenMP Application Program-

ming Interface, Version 4.5. http://www.openmp.org/wp-content/uploads/

openmp-4.5.pdf, November 2015. [Online; accessed 12-December-2016].

[86] Parallel Systems Group, University of Innsbruck. Insieme Compiler and Run-

time Infrastructure. http://insieme-compiler.org. [Online; accessed 6-

February-2017].

[87] M. Peercy, M. Segal, and D. Gerstmann. A Performance-oriented Data Parallel

Virtual Machine for GPUs. In ACM SIGGRAPH 2006 Sketches, SIGGRAPH

’06, New York, NY, USA, 2006. ACM.

[88] H. Perkins. DeepCL. https://github.com/hughperkins/DeepCL, 2016. [On-

line; accessed 19-December-2016].

[89] L.-N. Pouchet, C. Bastoul, A. Cohen, and N. Vasilache. Iterative Optimization

in the Polyhedral Model: Part I, One-Dimensional Time. In Proc. Intl. Symp.

on Code Generation and Optimization, pages 144–156, 2007.

[90] Qualcomm Technologies. Qualcomm Adreno OpenCL Programming

Guide. https://developer.qualcomm.com/download/adrenosdk/

http://developer.download.nvidia.com/compute/cuda/1.0/NVIDIA_CUDA_Programming_Guide_1.0.pdf
http://developer.download.nvidia.com/compute/cuda/1.0/NVIDIA_CUDA_Programming_Guide_1.0.pdf
http://developer.download.nvidia.com/compute/cuda/1.0/NVIDIA_CUDA_Programming_Guide_1.0.pdf
http://www.openacc.org/sites/default/files/OpenACC_2pt5.pdf
http://www.openacc.org/sites/default/files/OpenACC_2pt5.pdf
http://www.openmp.org/wp-content/uploads/fspec10.pdf
http://www.openmp.org/wp-content/uploads/fspec10.pdf
http://www.openmp.org/wp-content/uploads/cspec10.pdf
http://www.openmp.org/wp-content/uploads/cspec10.pdf
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://insieme-compiler.org
https://github.com/hughperkins/DeepCL
https://developer.qualcomm.com/download/adrenosdk/adreno-opencl-programming-guide.pdf
https://developer.qualcomm.com/download/adrenosdk/adreno-opencl-programming-guide.pdf
https://developer.qualcomm.com/download/adrenosdk/adreno-opencl-programming-guide.pdf


BIBLIOGRAPHY 199

adreno-opencl-programming-guide.pdf, October 2016. [Online; ac-

cessed 19-December-2016].

[91] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Amaras-

inghe. Halide: A Language and Compiler for Optimizing Parallelism, Locality,

and Recomputation in Image Processing Pipelines. In Proceedings of the 34th

ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation, PLDI ’13, pages 519–530, 2013.

[92] T. Remmelg, T. Lutz, M. Steuwer, and C. Dubach. Performance Portable

GPU Code Generation for Matrix Multiplication. In Proceedings of the 9th

Annual Workshop on General Purpose Processing Using Graphics Processing

Unit, GPGPU ’16, pages 22–31, 2016.
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